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AN APPROXIMATE SOLUTION OF THE EQUATIONS OF MOTION
FOR ARBITRARY ROTATING SPACECRAFT

By Peter Ralph Kurzhals
ABSTRACT

The determination of the motion of rotating spacecraft, such as
manned space stations and spinning satellites, requires the solution
of the spacecraft's equations of motion with varying disturbance torques
and mass distributions. The numerical integration of these equations
on high~speed computing equipment can give only limited information on
the effects of disturbance and spacecraft characteristics, and cannot
provide the physical insight needed for an analysis of the spacecraft
motion. An approximate solution of the governing equations which would
yield a direct assessment of the effects of applied disturbances and
would lead to a clear understanding of the motion mechanics could thus
be particularly useful.

This dissertation comprises the development and application of an
approximate analytical solution for the motion of arbitrary rotating
spacecraft with variable disturbance functions. The solution is based
on the assumptions of small changes in the spacecraft inertia character-
istics, body rates, and Euler angles. The rate and attitude errors,
resulting from the application of disturbance torques, are described by
complex pseudovectors and the governing spacecraft equations are reduced
to linear differential equations in terms of these error vectors. Solu~
tions are obtained for the steady spinning mode and for a spinup and

despin mode.
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The solutions for the spinning mode consider the effects of initial
errors, external torques, and instantaneous and periodic mass motions
within the spacecraft. The resultant errors are presented as error
component time histories and as traces of the complex error vectors.
Upper bounds of the error magnitudes are deduced from the error vectors.
Both the general case of nonsymmetric spacecraft and the special case
of spacecraft rotating about an axis of symmetry are examined.

Periodié mass motions within the spacecraft are shown to have
significant effects on the spacecraft motions and can produce errors
several times greater than the errors predicted for "worst-case"
instantaneous mass motions. Instability trends of the errors are also
found when the spin axis becomes an intermediate axis of inertia during
a mass motion and when the motions occur at the precession frequency A.

The effectiveness of several control techniques is investigated for
the approximate governing equations. Pure rate control and rate plus
rate integral control are found to be acceptable for damping of the
rate and attltude errors produced by mass motions and other internal
disturbances. Rate plus attitude control is, however, needed for the
elimination of possible residual attitude errors due to external
disturbances and for the reorientation of the spacecraft. The implemen-
tation of the control techniques is discussed for reaction wheel, control
moment g&ro, and reaction jet systems. Actuator commands and the required
control system weights are developed.

A comparison of the analytical solution and the exact solution

obtained from numerical integration of the complete equations of motion
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is used to establish the adequacy of the approximate solution. The
applications of the analytical solution are illustrated for a manned
orbital research laboratory and a large spinning space station.

The solutions for the spinup and despin mode are employed in the
optimization of spinup and extension techniques for cable- or strut-
connected spacecraft modules. Fuel savings of about 22 1b per spinup
and despin cycle of the manned orbital research laboratory can be
obtained by a continuous-thrust extension.

The analytical solution shows that a simple and valid interpreta-
tion of the spacecraft motions is possible for a large number of applied

disturbances.
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IV. SYMBOLS
Aj complex coefficients of forcing function, (B-1) and (30)
a povwer conversion factor, (254)
a,b,c,d,e,f characteristic coordinate for the error traces
Bj complex coefficients of total rate error relation, (&3)
Cs complex coefficients of total angular error

J
relation, (44)

Dl’D2’D3’Dh’D5 spinup parameters, (295) and (297)

El’EE’Ej’EM | Torcing function coefficients for variable inertia
products, table 4 and (112)

E5,E6,E7 solution function coefficients for variable inertia

products, (113) and (115)

F complex foreing function, (50)

F complex solution function for the body rate errors

? complex solution function for the Fuler angle errors

fx,fy forcing functions for the controlled spacecraft,
(213) and (21k)

G complex actuator torgue

Gg actuator stall torque

g complex control torque, (209)

H rigid-body angular momentum

I moment or product of inertia

IO spacecraf't moment of inertia without moving particles

L., radial inertia product, Iy, + ilyz



p

e
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specific impulse

total impulse, (284)

control gains for the X and Y axes, (209)

nondimensional control gains for the X and Y axes, (210)

nondimensional external moment, (A-30)

distance between mass centers of manned and counter-
weight modules

effective spinup moment arm, (294)

external moment, M, + ﬂﬁy

spinup moment

mass of moving particle

mass of spacecraft and moving particles

order of [?9

external force

frequency for moving particle

constant defining center of mass change, (A-25)

position vector of moving particle measured with respect
to the origin of the fixed coordinate system

position vector of origin of spacecraft coordinate
system measured relative to the origin of the fixed
coordinate system

damping ratio

position vector of moving particle measured with respect

to the spacecraft coordinate system



UJH l

sgn

X,Y,Z

X,¥52

u,v,w

-12—

position vector of composite mass center measured with
respect to the spacecraft coordinate system

Laplace transform variable

signum function, denoting the sign of the characteristic
coordinate or variable

constant step or impulse torque, Ty + iTy

cross coupling torque applied to spacecraft by control
system

time

time constant

unit step function, (B-4)

effective forcing function

weight

reference axes

scalar components of T along the X, Y, Z axes

nondimensional scalar components of T along the
X, Y, Z axes (A-30)

complex angular position error, @ + if, figure 4

limiting gyro gimbal angle, (272)

complex inertial position error, (14)

argument of Bj

argument of Cj

impulse function, (B-5)
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Subscripts:
a,b,c,d,e
c

cM
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quantity denoting the magnitude order of wy, dp, 6y,
82, II)’ Pp, and the nondimensional inertia terms
for the moving particles

nondimensional moment or product of inertia, (A-29)

modified Euler angles, figure 2

precession rate parameters, (24), positive when I,
is maximum inertia and negative when I, is minimum
inertia

nondimensional mass, (A-29)

nondimensional force, (A-30)

constant positive spin rate, (15)

nondimensional time, (A-29)

angular coordinate used in total error traces

total angular rate vector of spacecraft axis system

scalar components of ‘5 along the X, Y, Z axes

complex rate error, Iy + iQy, figure 3

damped natural fregquency

synchronous wheel speed

nondimensional scalar components of .6 along the

X, Y, Z axes

value for corresponding characteristic coordinate
counterweight module
extension at constant momentum

extension with constant spin rate



CT

p,q

Pq

SU
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extension with continuous thrust
disturbance

fixed coordinates

final value after spinup

gyro

gyro gimbal

intermediate coordinates

intermediate value before extension
value for jth term or mass where j=1, 2, 3, . . .
component for X or Y axis with k # 1
upper bound

momentum

manned module

maximum value

summed value for moving particles
value referred to origin of spacecraft body axes
initial value

pover

camponent for X, Y, or Z axis
component for XY, XZ, or YZ plane
spinup fuel

value for spacecraft mass center
reaction control

residual value
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T total

X,¥,% component for X, Y, or Z axis

XY, XZ,yZ component for XY, XZ, or YZ plane
W reaction wheel

A dot over a symbol denotes the derivative with respect to time.

An arrow (-) over a symbol denotes a vector.

A tilde (~) over a symbol denotes the general solution function
corresponding to initial rate and attitude errors.

A single (') and double (") apostrophe denotes particular elements
of a vector component along the spacecraft axis.

The quadrant for the angles corresponding to the inverse trigono-
metric functions tan'l( ) is determined by the sign of the numerator
and denominator of the term in the brackets. When both numerator and
denominator are positive, the angle is in the first quadrant; when the
numerator is positive and the denominator is negative, the angle falls
in the second quadrant; when both numerator and denominator are negative,
the angle falls in the third quadrant; and when the numerator is negative
and the denominator is positive, the angle falls in the fourth quadrant.

All square root terms in this analysis are principal, positive

values. These values may be positive real or positive imaginary numbers.
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V. SUMMARY

The assumption of small changes in the inertia parameters has been
used to derive approximate rotational equations of motion for arbitrary
spinning spacecraft in the small angle and rate regime. Complex repre=
sentations are introduced to define the rate and attitude errors produced
by applied disturbances, and analytic solutions are obtained for the
steady spinning mode and for the spinup and despin mode.

Solutions for the steady spinning mode consider both the uncantrolled
and the controlled spacecraft motion for characteristic disturbances.
These disturbances include initial errors, externally applied torques,
and instantaneous and periodic mass motions within the spacecraft. The
errors induced by the disturbances are described by the error component
time histories, and by vector traces of the complex error representations.
Upper bounds of the errors are developed for the uncontrolled case, and
the required control techniques and control systems are exsmined for the
controlled case.

Solutions for the spinup and despin mode consider extensible space-
craft modules connected by struts or cables. Fuel censumption relations
are derived for several extension techniques, and optimization of the
extension techniques is shown to yield appreciable fuel savings.

Comparisons of the analytical solutions and exact solutions obtained
by numerical integration of the complete équations of motion are found to
be in excellent agreement, and the applications of the approximate solu-~
tion are illustrated for a manned orbital research laboratory and a large

spinning space station.
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VI, INTRODUCTION

Proposed spacecraft, such as the manned orbital laboratory (ref. 1)
and manned interplanetary vehicles (ref. 2), may use rotation about a
maximum axis of inertia to provide spin stabilization and to produce
artificial gravity for the crew. Theseispacecraft will be subjected to
variable torques arising from both internal and external sources (ref. 3)
and will undergo wobbling motions as a result of these torques. Since
the wobbling motions (ref. 4) produce attitude errors (which may affect
the spacecraft's power system and experiments) and oscillatory rates
(which may lead to discomfort and nsusea of the crew), an analysis is
required to determine the magnitude of any such attitude errors and body
rates for the spacecraft under consideration. |

In order to carry out this analysis, the spacecraft's equations of
motion with varying inertias and torques must be integrated to define
the spacecraft response for the anticipated applied disturbances. In
the past, such a solution has required high~speed computing equipment
for the numerical integration of the equations of motion and has con-
sumed a large amount of computer time to assess the effeets of a range
of disturbances for a particular vehicle configuration.

Because of the rather limited application of these results, an
approximate analytical solution of the spacecraft's equations of motion
would be of considerable value. The closed form solution could be used
to determine attitude errors and body rates introduced by "worst case"

type of disturbances and would define instability trends that might
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result from applied torques. In addition, such a solution would allow
a direct evaluation of the effects of changes in both the spacecraft's
configuration and the disturbances on the spacecraft's motion.
Approximate analytical solutions of the equations of motion for an
arbitrary rotating spacecraft may be cbtained for linearized governing
equations and Euler angle fransfonmations. A number of such solutions
have been obtained for the simplified equations of motion corresponding
to symmetric or near-symmetric spacecraft. Ieon (ref. 5) and Thomson

(ref. 6) have developed attitude and rate relations for spinning near-

symmetrical bodies by considering a vectorial representation of the total

errors. Thomson and Fung (ref. 7) have also investigated the stability
of near-symmetric spinning épace stations and have defined regions of
instability for an eiample vehicle. In addition, Hackler (ref. 8),
Buglia (ref. 9), and Loebel (ref. 10) have derived expressions for the
attitude and rate histories of symmetrical spacecraft by linearizing the
equations of motion.

Several analytical solutions for a nonsymmetric spinning body with
constant inertias have also been obtained. Exact solutions for a torque-
free body were developed by Routh (ref. 11) and MacMillan (ref. 12) in
terms of Poinsot's construction and elliptic functions and by Whitbeck
(ref. 13) in terms of a phase plane approach. An approximate method
which shows good agreement between the nonlinear and linearized results
for a vehicle under applied torques was presented by Suddath (ref. 14).

Various other analytical approximations are discussed in the liter-

ature (refs. 15-20). Existing solutions, however, have considered either
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very speclal cases of nonsymmetric spacecraft or have been restricted t.
particular symmetric or near-symmetric spacecraft with gpecified distu.-
bances, Such results cannot be applied to the general case of a nonsyu-
metric spacecraft with varying products of inertia and applied torques,
and offer little information on the properties of the motion of such
spacecraft. Furthermore, the form of these solutions has made the
determination of upper limits for the total attltude and rate errors
difficult since the amount of computational time requirea to define the
error boundaries is in general prohibitive.’

The present analysis develops & solution technique for arbitrary
rotating spacecraft with variable disturbance functions. The complete
equations of motion for nonsymmetricbvehicles are linearized and solved
with time varying forcing functions and products of inertia. General
and particular solution functions are determined and are used to generate
rate and attitude expressions corresponding to the variable forcing
functions. A complex vector representation is introduced to define both
error time histories in component form and the total angular and rate
errors.

A number of disturbances are considered for both nonsymmetric and
symmetric spacecraft; and the corresponding solutions are examined for
the uncontrolled and controlled cases. Upper bounds of the total errors
are defined and body-fixed and inertial traces of the total errors are

analyzed. A method of selecting control commands is also presented.
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| VII. PROBLEM FORMULATION

A, Spacecraft Motion
The rotating spacecraft will be related to the reference system
shown In figure 1. A set of X Y Z axes fixed to the spacecraft is used
to describe the rotational motion of the spacecraft with respect to a
set of Intermediate Xy Yy Zy coordinates., The intermediate coordinates
translate without rotation in inertial space, but always remain parallel

to a set of Xp Yp Zp axes fixed in inertial space.

N\ Spacecratt

Xg

Figure 1.~ Reference system for rotating spacecraft.

The inertial attitude of the spacecraft may be defined by means of

three modified Euler angles which determine the relative motion between
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the X ¥ 7 and Xy Y1 Z7 axis systems. These modified Euler angles, as
11lustrated in figure 2, results fram three consecutive rotations. The
first rotation, about the Zy axis, carries the X1 and Y1 axes through an
angle V¥ measured in a horizontal plane. The second rotation, about the
new Yy axis, then takes the X1 and Zy axes through an angle 6 measured
in a verticgl plane. Finally, the third rotétion, about the new X1 axis,
carries the Y7 and Z1 axes through the angle @ measured in an inclined

plane to give the X, Y, and Z axes.

Figure 2,- Vector transformation between spacecraft axes
and intermediate reference system.

The modified Euler angles can be determined by expressing the

rotations V¥, 6, and CP in terms of the angular rates s Qy,



and Q, about the vehicle axes, The vehicle anpgular rates then can be
found from a solution of the vehicle moment and force equations. The
resultant expressions for ({, {y, and @z are substituted into the
Euler angle transformations, which now reduce to differential equations
in V¥, 6, ®, and t. The solutions of these equations give the attitude
of the spacecraft relative to the intermediate axes and thus determine

the angular motion of the spacecraft.

B. Assumptions
To make the general nonlinear equations of motion amenable to

analytical treatment, the aésumptions

O <8 A
Qy < Oy
! (1)
sin 6 = tan 8 = © cos 8 =1
sin @ = tan 9 = @ cos @ =1

were introduced in the moment, force, and Euler angle relations developed
in appendix A. The further assumption that the nondimensional inertia
terms associated with any mass particles moving with respect to the
spacecraft were small was also made to linearize the equations. The
resultant method of reduction to linear form and the range and validity

of these assumptions are discussed in appendix A.

C. Governing Equations
With the assumptions of the precedling section, the equations of

motion reduce to
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iy + [(———JIZ ;xI )Qz]ny = %;{Mx + 0p(Igz - Tyz0z) + [
J

1

/‘:3

m,j(zji,j - xJéj)

L‘\

Il

1

n

S my(zg¥y - ¥52y)

- m(zgxg - Xg2g)| Oy +
J=1

- mg(zs¥g - ys:":s)> (2)

n
. I, -1I . v .
by = L(Lfy-'g)gz]% = %"‘{My + 05 (Iyy + Ixz0z) + {Z mi(z3¥5 - ¥323)
y j=1
n
. . 7 . .
- ng(zgyg = yszsﬂ Q7 + ;L mj(sz‘j - z3x3)
J=1

- mg(xZg - zsiis§ : (3)
Iy

n
flz + E-z— & = EJ; M, + Z mj(yji‘j - XJ'};‘j) - ms(ysis - xs§s§ (%)
=1

The inertia terms are

3

[
»
|

2 2 2 2
= Ixo + mj(yjo + 230 ) - ms(Yso + Zso )

[~

Cae
it
[

?)

[~

2 2 2
Iy = Iyo + my(x30° + 2307) = melXs50” + g0

.
fus’

I W

= Izt ) m.j(x32 + 3'32) - ms(xsg + ysg) \ (©)
571

4
N
f




=

Ixz = /' mjszj - M X Zg

J

Iyz =

3=1

il

mJyJZJ L msyszs

(5)

and, consistent with our assumptions, the moments of inertia are taken

as constant in (2) and (3), but are allowed to vary in (4).

iz = 2 2 mj(xji,j + YJS’J) L ms(xsis. + ysi’s)

Ixy =

.

) Iyz—

where Xjs Yis» Zj

moving with respect

ciated inertia derivatives then become

n

j=

The asso=

> (6)

J

denote the position coordinates of the mass m

to the spacecraft, and

? (7)
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denote the position coordinates of the composite mass center for the
spacecraft and the moving masses.

The spin rate 0, 1s obtained by integrating (4) as

n

Qz = i'l- Iz0l20 + f M, dat + f y mj(ydii‘] - xjyj)
z et
J=1

- mg(ygXg = x5¥g)|at (8)

where the first term in the brackets represents the system's initial
angular momentum and the remaining terms account for chénges in the spin
rate due to the applied torque M, and to the accelerations of the moving
masses.

Solutions to the spacecraft equations of motion may be obtained by
first determining Q, from (8) and then integrating (2) and (3) simul-
taneously to find @, and A,

These solutions can be substituted into the linearized Euler angle

transformations

P = Qg + 0,0 (9)
6 = 0y - 0,9 (10)
\If=ﬂz (11)

from which we have

n
¥ o= / i-‘:z. T20%0 + f M, dt + f le my(ys%y = x5¥3)

- mg(yeXg = Xg¥g)|dt ) dt (12)
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The soluticn of (2), (3), (9), and (10) then defines the motion of the
spacecraft in terms of the time histories of the body rates and Fuler

angles,

D. Total Errors

The body rates {Q, and Qy are the undesired rate components pro-
duced by the applied disturbances and will be referred to as the rate
error comporents. Similarly, the Euler angles ® and 6 describe the
unwanted attitude deviations that result from the application of the
disturbances. These ﬁuler angles will be referred to as the attitude
error componenté. The solutions for both rate and attitude error com-
ponents follow directly from the preceding section, and are found as
time dependent components along the body and inertial axes.

In practice, one is pfimarily goncerned with the total errors. For
example, the time variation and maximum value of the total angular
velocity error in body~-fixed coordinates must be known to assess possible
crew discomfort due to wobbling motions. The time yariation and maximum
value of the total angular position error with respect to inertiasl space
is needed to determine possible effects on the spacecraft experiments
and power system. The effects of removal of a disturbance on the
residual spacecraft motion are also of interest.

Both the total angular position and the total body rate errors may
be developed by using a complex vector representation (ref. 5). The
total angular rate error QIY can be obtalned by vector addition of

the body rates §x and Qy, ag shown in figure 3.
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Figuvre 3.= Vectorial representation of total angular
rate error.

Mathematically, Qxy may be written as
-
Q
5 > itan‘lt-z]
Oy = O + 1y = 0" + Oy x (13)

Similarly, the total attitude error a in body-fixed coordinates can
be considered as the vector sum of the small Euler angles ® and 0,
as illustrated in figure 4. To transform this pseudovector to the
inlermediate coordinate system, one must rotate the body coordinate

system through the angle V. The total inertial error ap is then

8

1Elf+tan"l($>]
ar = aelV = (o + 1e)e“’ = \/cp‘2 + 0% (1)
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Physically, ay represents the trace of the Z axis projected on

the X1 Yy plane and Qxy represents the trace of the total rate error

vector in the body-~fixed XY plane.

ZE&__

Figure 4.~ Pseudovectorial representation of total
attitude error.

Differentiation of (14) yields
ar = (& + 1ha)el’
and noting that

a + 100

é’

(15)

(16)
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rrom (9) and (10), one may use (11) to develop the relation

10,t

ap (& + 10a)e

10,t

1

]

(1)

The magnitude of the rate of change of the inertial attitude error is
thus equal to the magnitude of the rate error for the small angle
rogcime,

By integrating (17), one arrives at

105() .

t
o1 = oot Oy(T)e T (18)

as the solution for the inertial attitude error vector. The attitude

error in body coordinates becomes

-.Q
a = age iQ,t

it

t .
a,oe-iazt + e-iﬂz‘b [ Qxy(’f)elgzt dr (19)
Y0

and both the attitude errors ay and a can be directly developed
from the rate error expression.

If only total error vectors are desired, the time solution of the
equations of motion for &y, may be followed by application of (18)
and (19) to yield ay and a. If the rate and Euler angle components
are of interest, the direct solution of the linear differential equa-
tion (), (3), (9), and (10) 1s preferable.

1n the present analysis, solutions were first developed in the

iorm of time histories for the error components. The transition to the



total error form was then made by substitution of the vector expression

for the resultant rate error in (18) and (19).

E. BSolution Approach

The solutions of the equations of motion for arbitrary rotating
spacecraft can in general be divided into two types, namely those
assoclated with the spinup and despin modes and those associated with
the steady spinning mode.,

The spinup and desﬁin modes may_involve the extension and retrac-
tion of cable-connected éounterweight modules and thus could have major
and rapid changes in the moments of inertia for the spacecraft. During
these modes other disturbances, such as crew mofions and applied torques,
will necessarily be restricted and only the solution for ﬁhe spin rate
and angle, as given by (8) and (12) need be considered. The efficiency

of various spinup and despin methods using constant spin rate, constant

cable tension, or similar schemes can be readily evalusted from these
equations.

For the steady spinning mode, the variations of all total moments
of Inertia due to the moving masses associated with a particular crew
motion are small in comparison with the constant spacecraft inertias
Ix0s Iyo, and Izp. The assumption that the total moments of inertia
Ix» Iy, and I, retain their initial values throughout the crew
motion (see appendix A) will be made for this mode.

In addition, disturbance moments due to crew motions and applied

torques will now act primarily about the spacecraft X and Y axes. Any
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torques nbout the spacecraft Z axis can be neglected during a partienlar
disturbance since the resultant change (refs. 8, 1%, 19) in the spin
rmite will be small in comparison with the initial spin rate.,

In accordance with these assumptions, one may approximate the spin

rate by its constant value at the initiation of a particular disturbance

o, - 20 = (20)
4

tor the evaiuation of the effects of that dlsturbance on the spacecraft
motion in the steady spinning mode. The value o¢ can and will be
taken as positive without loss of generality.

Since the spinning mode occurs for the major portion of the space-
craft lifetime, this mode will first be analyzed in considerable detail
and several spinup and despin techniques will then be considered in a

later chapter.
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VIITI. ANALYSIS OF SPINNING MODE

For the spinning mode, the moments of inertia take on their initial
values immediately after initiation of the disturbance and remain con-
stant for the duration of the disturbance. The inertias may thus be

camputed from (5) as

n
\
2 . 2
Ix = Ixo + j? “ﬁ(yjo + zjoe) - mg(yso” + 2802)
J=1
n
Iy = Iyo + y mj(x"jog + ZJ’OE) - ms(x502 + 2502) > (21)
J=1 ‘
n
Iz =Iz0 + . mj(x302 + one) - ms(xso2 + Ysoz)
A

and the governing equations may now be developed directly from (2)

and (3).
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For simplicity of notation, introduce the precession rate parameters
\
A = (21X,
Ix

Ay = (L..Ex)

I (24)

——

and

xgz)&cxy

so that (22) and (23) beccme

e 2 - .e L] .
O + N0y = Il—x My = AgMy + O'E[xz - Iyz(c + Ay) - Ixzc‘)\)a

¥ z mj[(" * M)(zg%y - xg25) = oAy(z475 - 3525)
3=1

+ (Zj‘y.':j + ijj - y.j.é.,j - y’j‘ij)" - Iﬁs[(ﬁ' + ?\y)(zsﬁs - XS:Z'.S)

- U7\y(zs3.fs - ysés) + (zgys + ési;s - ¥sZsg - l}sisg]

'dy + 7\29y = 1\'/1y + MMy + oEfyz + :'[xz(c + Ny) - Iyz‘ﬁ\x]
n
+ V mj[(o' + ?\x)(ZJyJ - szJ) + GAX(ZJ}'{J - xjéJ)
+ (xj'z':j + J.Cj.z.j - Zj..).c.j - éji&jﬂ - ms[(c + ?\x)(Zss’.'s - ys‘z:s)

¥ Oh(zgks = Xgig) + (xgEs + Xsbg = Zgky = asses)]



- 36 =

or

-dx"' }*EQ‘X = Fy (25)

By + N, =y (26)

Fy = :-[Ja-{ﬁx - MM, + G[ixz - fl:yz(o +Ny) - Ixzo%)]
%

m:;[(" + M) (zgiy - xyEy) = ohy(z5y; - v5k,)

j=1

o
]

+ (2575 + 2375 - y3E; - 5’323)] - ms[(f”' M) (2Xg = xgZg)
- U)\'Y(ZSS'S - ¥sZg) + (2g¥5 + Zg¥g - Vgls - YsZs)JB
n
R Y b . .
= 'I—J;{Mx - )\y-My + ;mJGJ<YJ + (20 + ?\y)xJ - 0’(0’ + 2)\‘./')3’3
-c nyd} + Zj{yj + 20xy - U%g} - Z3 {yj + )‘ny>
- 'z-jyj] - mg|zg {ys + (20‘ + )»y)iés - o(o + 2)\y)3',s - 02}\yxs>

+ zg {3;8 + 20xg - ‘723’3} - a-".S<3}s + 7‘Yx8> - ESYSJ} (27)



and

Fy = E:L—{My + AM, + c:rEI'yz + ixz(a +Ay) - Iyzo?\x]

Y

n
)

mj[(u + )\x)(zjifj - yJ‘Z.J) + O'M(Zjij - xjij)
J=1

+ (xj‘gj + ).(J.Z-j - zj.fj - éjijﬂ -. mS[:(c + )\x)(Zss;s - ys'z's)

+ ohg(2ZgXs = XgZg) + (XgZg + XgZg = ZgXg = 2;siés)]}

= %;{My + A M, - Z mj[szi{j - (20 + M)y = oo + 2h)x;

J=1

+ 027\ny} + iJ {)EJ - 20‘3}3 - 02XJ} - ZJ {5(‘] - 7\xyj} - Zij]
+ ms{}s{.x"s = (20 + M)y = oo + 2 )% + 02)‘xy5>

Adding (25) and (26) in guadrature and referring to (13) yields

e 2 :

fiy, + X0y = 7 (29)
with *

F=F +iF (30)
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The solution of (29) is

Oy = E%FQ sin At + Qo cos At + F (31)

where F 1s obtained by replacing functions of t 4in F by the core
responding particular solution functions given in appendix B.

The initial conditions at t = 0 are

Oyo = o * 1Qy6

(32)

o {0 (P

The particular contributions of an applied disturbance to the initial

errors are inclyded in the Isplace formulation of the solution terms.
Substitution of (32) into (31) then results in expressions for the

total error Qxy and its components {ly and Qy. The spin rate Q,

is found from

I
Q

QZ:'-

and all of the body rates have thus been defined.

The Euler angle differential equations can be written as

é§+62¢=§2x+dﬂy
(33)
0+ 029 = hy - oly
and after adding in quadrature

&+ o = hxy - 100y (34)
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Substitution for the rate error yields

. icl . - -
&+ 0% = [)\Qxyo - #‘%sm At + [ﬂxyo - loflyyolcos At + F ~ ioF
(35)

which has the solution

(4

‘ R ' iO'. 0
a.=?§-sino’t+a.ocoso‘t+-—2%;\—2— E\‘)ﬂow ?][Siﬂ?\t

(36)
where F and F are obtained by replacing functions of t in F by
the corresponding particular solution functions of appendix B.

Initial conditions at t = 0 are

(37)
Gp = Oy = 1oag
and the Euler angle V¥ can be determined from the relation
Vv = ot (38)

This completes the development of the Euler angles.
Since the terms involving the initiasl errors will have the same

form for all disturbances, introduce

L
~e

Qxy = ﬁx-+ iﬁy =

Ao 8in At + Ogyo cos At
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snd (39)
o] .
N~ o~ ~ N - 100y
a5@+ie:%&o~[ Q)(yg gyo] sin ot
- A
+ [:Qxyog" idgxy O]} cos ot
- A
+.___...21 5 m,q,o- 51n At
0" = A A
+ [bxyo - 100yyo cos MJ
or in component form
O = ey cos At = — %, sin At
ALy,
(40)
}%, = Q, cos At + (Axlx)nxo sin At
ALy
wnile
~ IySyo Ixxol| |
Q= Epo - IZ]cos ot + [60 + o1, sin ot
I I A
+ [__x_nyil cos At + [_______x xfxo sin M
oI, oAI,
\'llld_ (hl)

@
il
Mo )
o)

+
"
>i::t

I - I
——Qcosot—wo——y&—esino‘t
ol, oI,
I I ?\yﬂ:r
- [:.1‘&.9]005 At + {:—y——-—o]sin At
o1, oI,
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A1l coefficients in these equations may be evalusted from the initial
Oy, 95, 0O, and the initial moments of inertia,

o0,

conditions S0,
The terms ‘involving the applied disturbances can be similarly put
into component form, so that the body rates and Euler angles can be

found by equating real and imaginary parts in
ey = Ox + 10y = Oy + F
and (42)
~ = =
a=0+ 16 = a + F - icF
where F, F, and F are taken from appendix B.
B. Total Errors
The totsl rate and attitude errors may be put into a somewhat
simpler form by expressing all trigonometric terms occurring in these
errors In exponential form. Thus, one 1s able to obtain
£
Z >& ehetPat (3)
j=1 Zb
The complex

and h vary over a finite range of integers.
BJ must be evaluated for a

where j

constants BJ

and the real constants
The total angular error in inertial space, as defined by equa-

particular disturbance.

tion (14) can be similarly expressed as
u v
i
ar = (@ + i8)e = 57 ;ﬂ Cjthé 73t
=1 b0

()
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wvhere J and h again remain finite integers with C,j and vy 3
determined for a specified disturbance.

In engineering applications, one 1s also interested in the maximum
magnitudes of these errors. Since the exact solution for the maximum
error magnitudes requires an iterative determination of the zeros of the
magnitude derivative - and this requires considerable caomputing time -
an alternate method of defining upper bounds for the errors is preferable

from the practical standpoint. It is noted from (43) that

£ &
g - |2 ) mee

IA
[~ Tw
g
&
[

ct
=z

IA

f g
D2 Bl = ol (i5)

and similarly from (44) that

1
\/Ja
<
Q
Ce
o+
=3
[N
~
[
ct

log| = |a]| = |

IA
1=
[~
_=

<55 ol 1) = b o
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These upper bounds provide limiting values of the error magnitudes which
are adequate for assessing the effects of particular disturbances. More
accurate estimates of the absolute maiimum errors and their directions

can be obtained from polar plots of the complex errors if desired.

C. Characteristic Disturbances for
Nonsymmetric Spacecraft

Most disturbances acting on rotating spacecraft may be approximated
by impulsive torques, step torques,_step products of inertia, or variable
products of inertia. For example, docking impacts and attitude cantrol
moments can be represented by impulsive or sfep torques, while crew or
cargo motions would result in either step or variable products of
inertia. Other externally applied torques (such as the sinusoidal
gravity gradient moments) are dependent on the particular spacecraft
and orbital characteristics and cannot be defined without selecting a
specific vehicle and orientation.

The effects of characteristic disturbing functions on the spacecraft
motion are presented in this section. Time solutions for the Euler angle
and body rate errors are developed for arbitrary constant moments of
inertia, and upper bounds for these varigbles are given.

1. Tmpulsive Torques

a. Time Histories

Docking impulses caused by resupply and rendezvous vehicles or
micrometeorite hits may result in impulsive torgques acting on the space-

craft. These torques can be written as

136



M= My + 1My = (T + 1Ty)5(t) (47)
and the corresponding forcing function is

F = il;{f:vxé(t) - xyTya(t)] + %;[Eryé(t) + )\xTxB(t)] (48)

For arbitrary initial conditions, the total rate error may be found
from (27), (42), and (48) by using the solution functions given in

table I. The results are

T | ToAy
o~ 1 ; 1 x
%"%*’T;[Tx cos Nt = = sin Kt]+f;Ery cos 7\t+—-7\——-sin Kt]

(49)
where % is given by (39) and (LO).

The attitude error can be similarly determined as

Q= o+ = T (cos At - cos ot) + T lx—sin?xt-ksino‘t)
Io LY X\ '

: N
- iEDx(cos ANt - cos ot) - TY(')—\Z sin At + sin o‘t)]} (50)

with o determined from (39) and (41).

b. Total Errors

Conversion of the total angular and rate error to exponential

form leads to the complex vector representation

Oy = U + 10y = ?'7.,“ + B3ei?\t + ]Bue-j'?\t (51)

where

~

by = Blel ikt

At

+ Boe~ (52)
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¢c. Initial Error Contribution

The total errors ﬁ’W ang, '51 which correspond to the initial
conditions x5, &y, 0, @, and 6, will be considered first, A
simple geametrical interpretation of these error traces is possible.
For ?ixy this interpretation follows from the trace of the velocity
error in the XY body axis plane, as shown in figure 5.

X

Rate error trace

Figure 5.- Rate error trace for initial conditions.

The path described by the tip of the ?f;q vector is an ellipse in the
body-fixed plane.
The characteristics of this ellipse are derived from an examinae~

tion of (52) and (53). The semlaxes a and b are determined as

1

2 2
\ = g Ve (20 G 7|
. (57)
1 2 . (1.0 2

]
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and the angular position of the rate error vector is given by

0, = tan™t Ix % tan| Mt + tan'l<M) (58)
oy

IxQJcb\/Tx-
The quadrant for the angles corresponding to the inverse trigonametric
functions 'ban'l( } in (58) and in all subsequent equatlons is deter-
mined by the sign of the numerator and denominator of the term in the
brackets. When both numerator and denominator are positive, the angle
is in the first quadrant; when the numerator 1s positive and the
denominator is negative, the angle falls in the second quadrant; when
both numerator and denominator are negative, the angle falls in the
third quadrant; and when the numerator is negative and the denominator
is positive, the angle falls in the fourth quadrant.

The position of the major axis of the ellipse is determined by
the relative magnitude of I; and Iy. If Iy > Iy, then the major
axis coincides with the Y body axis and the maximum anguler rate occurs
about this axis. Conversely, if Iy > Iy, then the major axis and the
maximum angular rate lie along the X body axis. The period of revolu-

tion is l%—\t— and the % vector rotates in the direction of the

precession rate A. When I, is a maximum inertia, this rotation is
in the direction of spin; when Iy is a minimum inertia, the rotation
is against the direction of spin.

The trace of the rate error vector can be directly compared with
the results of Poinsot's geometric construction (ref. 12), in which the

path of the instantaneous rate vector on the ellipsoid of inertia is
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called the polhode. For the present solution the rate vector is
restrained to move in a plane normal to the Z axis, which is a principal
axis of the inertia ellipséid. The polhode projection onto this plane
has been developed by Thamson (ref. 6, page 124) and yields a curve

whose shape is defined by the relation

Me(Tx)” + Ny (Ty0)° = elTalieo)” + Ay(Tydyo)” (59)

This relation describes an ellipse, with semiaxes given by (57). Since
the polhode projection is proportional to the rate vector trace derived
in this analysis, the approximate solution will exactly represent the
spacecraft rates when the variation in the spin rate is negligible.

The angular trace with respect to the Xy and Y7 axes is illus-

trated in figure 6.

Attitude error trace

for] o

- Iy Yo
tan | 22
( Ix on) fo 1

Figure 6.~ Attitude error trace for initial conditions.
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The path described by the tip of the '&:I vector 1s generated by a point
moving on a displaced ellipse, which in turn is rotating at the spin
rate. From (55) and (56), the center of the moving ellipse is located

by the vector sum of the initial attitude error a, and of the initial

+
angular momentum ratio term i[IxonGI WinOyﬂ. The radius a shown
z

on the figure is thus

= Jtae)® + (30002 (60)

vhile the semiaxes of the rotating ellipse became

N

o’
Il

oT, \/—— JIxon J-X;:) + (Iyfy, \/—7\—y)2
> (61)

2

Q
Il

GIZJ— (IxﬂxoxlTX) + (Iyfyo \[7\—y)

and the precession of the attitude error vector within the ellipse is

an~t M tan|At + tan ..1(Iy9yo G) (62)
j:y Tx%%o | Ay

When A is rational, the path of the attitude error trace is closed and

S
1

has a period of 2k, where k is the least cammon denaminator of o
and A.

The trace of the attitude error vector is in agreement with the
general properties predicted by MacMillan (ref. 12) for the torque-free
motion of a rigid body with respect to a unit reference sphere. This

sphere was drawn ebout the fixed point of the spinning body as a center;
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and the motion of the body Z axis about the fixed-momentum axis was then
described by the trace of the Z axis on the unit sphere. The vector
trace, introduced in the present analysis, can be considered as the pro-
Jection of this Z axis trace onto a plane perpendicular to the Zy axis.

It should be apparent that the Z, exis which is arbitrarily

I
defined as the fixed space axis corresponding to the initial position
of the Z axis, will not generally coincide with the fixed~momentum axis.
By assumption, however, the angle beiween these two axes is small. Hence,
the shape of the traces about the fixed-momentum axis should be approxi-
mately retained in the plane normal to the Zy axis. The fixed-momentum

: axis will appear as a displaced point on this attitude error plane.

In figure 6, the fixed-momentum axis projects as the center of
the rotating ellipse. The attitude error oscillates between two con-
centric circles drawn about the ellipse center. The radii of these
circles are given by the minor and major semiaxis of the ellipse. The
similarity of this motion with that depicted in figure 61 of MacMillan‘é
test is obvious.

Upper bounds of the values for the rate and attitude error

magnitudes, as developed from (45) and (46), are

=

|| 24m = 3

+1|
Y

NH
2
2]

[
»

)
2
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and

- / 2 2, _1 2 2 1 1 1
l"“llim %o * B +oIz \[&xﬂxo) + (Zyyo) +2orIz Ay ’ s

L

ﬁ:[xo.xo T2 + (Iy0, J5)? (64)

£ 1

Ny
The rate limit (63) gives the major semiaxis of the rate error trace and
is equal to the maximum rate error. The attitude limit (64) corresponds
to the sum of the center radii and the major semiaxis of the attitude
ellipse, and will be greater than or equal to the maximum attitude
error.

Several interesting trends may be observed from the geometrical
development and the relations for the upper limits of the errors. When
the spacecraft inertia Iy (or Iy) spproaches I, while the second
inertia Iy {or Iyx) remains different from Iy, then the rate and
attitude ellipses become very elongated. Smll rate errors induced
about the second inertia axis by impulsive torgues or other disturbances
can thus lead to large total attitude and rate errors. An example is a
cylindrical configuration spinning about an axis normal to the axis of
symmetry.

When the spacecraft inertia Iy (or Iy) is very much larger
than I,, excessive attitude errors will be produced by small body rates
and tumbling may occur. This result, however, is not surprising since
the inplane angular momentum is now much larger than the spin momentum.
Examples here are slender cylindrical satellites and missiles spinning

gbout a minimum axis of inertia.
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One may note that the smallest errors will be produced when both
Iy and Iy are much smaller than I,, and the spacecraft configuration
approaches that -of a disk.

The contributions of the errors ﬁxy and & to the limiting
errors Iﬂxy!lim and '“Ilim for a given disturbance will be omitted
in the remainder of the analysis to avoid undue complicafions of the
limiting error relations. These error terms could, however, be readily
included if this is desirable for a particular disturbance.

d. Impulsive Torque Contribution

If the initial error terms are taken as zero, the total errors
for the impulsive torques are equivalent to those for the initial rate
error terms. The geometrical representation and the maximum error values
for the vectors corresponding to the initial errors will thus hold for
the impulsive torques if fixo 1is replaced by %i, Qyo is replaced
by %X; and @, and 6, are taken as zero in (57) - (64) and in
figur;s 5 and 6.

2. tep Torques

a. Time Histories

The spacecraft attitude control system and external sources,
such as gravity gradients, may also exert torques about the body axes.
For this example, consideration will be given to constant step torques

of the form

M =My + iMy = (Tx + iTy)U(t) (65)
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and the associated forcing function

F = -IJ; T,5(t) - ?\yTyU(t;} + %;E?ya(t) + 'AxTxU(tﬂ - (86)

The body rate error is found from (21), ¢2), and (66) by sub-

stitution of the solution functions of table 1, and is
Q)qy=5xy+l Ll sin)d:-?ﬂx(l-coskt)‘
A\Iyl X* A

+ 2lr sin At + Ex—(l - COS ?\t)J (67)
Iy Yy A

The attitude error o is determined in a like manner as

~ 1 11z ) 1 ]
c=a+ — (T |=t-= = cos At]| = = cos ot
oI, x[j?y(ly | g

1 . 1
+ Ty[}\- sin At - 5 sin o‘%

¥ AL

X
+ Tx[% sin At - -i—'- sin oﬁ]} (68)

The initial error contributions %r:y and « are defined as before.

+1i{T —-l—(-I—Z-- cos 7\t> -%coso*t

b. Total Errors

A transformation of these components to polar form yields

irt -1At

Qw=3.,w+35+13ue + Bse ,(69)
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with
2 5] ~itan l[Tx)‘xIx] w
By = (- /(ﬂL) + (i) . TyhyIy
Iy My
~ttan” Tx‘/:f‘f]
IS I S | Tyd Ny
U {Ixm ny)\;]. } - > (70)
7.2 3\ itan"t x@
B = (3 —=- l]\/X+q"ye Ty iy
L LIy & )
and
o = g& . C6ei(c+x)t N c7ei(c-K)t N Cgeict (71)
with

1]
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[
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+
I (ad
)
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3
]
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+
%Hm
\V"}
° _
(._F
o
:jl
ey
N!—] <<+-§
<
L.._{._J

C6 -7‘\;
5 —itan—l[Ty‘/ﬂ > (72)
1 (1 17T m 2 T,
Cr = ¢~ - \/ X+ X De XV X
EIZO‘ g )\y )\x_l 7\x

and o\ 2] itan” |
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The trace of the total rate vector due only to the step torques is shown

in figure 7.

Rate error trace

- <

lcl

@b .
bl
¢
d a

| %yl

‘\\‘\\~______,—///, =

Figure 7.~ Rate error trace for step torques.

This trace is now an offset ellipse which intersects the origin at time

Zero.

The elements of the rate ellipse can be determined from (69)

and (70). The center of the ellipse is located by the radius

2 2
_ Ty Ty
B .

and the angular coordinate

&, = tan-1<:zzzzz> (74)
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The semiaxes of the ellipse are found from

2 2
1 Tx +

b = e

ANy N

) (75)

Tx2 2

¢ =1 .
LNy A& J

and the angular location of the rate error vector is

T
o = san™t %-tan At - tan-l<—§:£§é> (76)
Ty J Py

The positicn of the major semiaxis of the ellipse is again dependent on
the relative magnitudes of I, and Iy. If Iy > Iy, the maximum semi-
axis is parallel to the Y axis; if Iy < I,, the maximum semiaxis is

parallel to the X axis. The motion of the Qxy vector is in the direc-
21

tion of A and has a period of

An extension of Poinsot's development (ref. 12) to the motion of a
rigid body under step torques appears possible. The fixed reference
point, with respect to which the polhode projection is generated, lies
along the maximum angular momentum vector possible for the body. The
angular accelerations vanish for steady spin about this axis of maximum
angular momentum. By referring to (2) and (3), one notes that the

associated coordinates for the fixed point are proportional to



T N
and | P (77)
:Tx
YoIRL

for the constant step torques.
The shape of the polhode projection corresponding to this fixed

point is defined by (59). Substitution of (77) into (59) yields the curve
2 2

2 I SR
AT )™ + A (Ty0)) w (78)

An inspection of figure 7 shows that the polhode projection is indeed

represented by the rate vector trace. The fixed point coincides with the

center of the trace ellipse and the equation of the ellipse becomes (78).
The inertial attitude error corresponding to the step torques

yields the trace shown in figure 8.

-— <
<

&

Attitude error trace

Figure 8.~ Attitude error trace for step torques.
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This trace results from a point moving along an ellipse, which remains
Tixed with respect to the rotating radius of a stationary displaced
circle. The motion begins at the origin at time zero.

The center of the stationary circle is located by the radial

_L [2, 2
@ = Ty~ + Ty (79)

corresponding to the ratio of the torque to the spin vis viva. The

coordinate

radius of the stationary circle is

2 2
1 /T T
Sy e

and the center of the moving ellipse has the angular position

& = ot + tan-l<?ﬁﬁ> - tan-l<%r-> (81)

TXIX)\X X

The semiaxes of the ellipse are computed from the parameters

N Txe ) Tye h
ol, m )‘y M

_ 1 Tx2 + Ty2

ol, \/K Ay M J

and the semiaxis |c| makes the angle

-1 TyT
o =% - tan (ﬁ) (83)

CcC =

(82)

—




- 60 =

with the radius b of the stationary circle. The angular coordinate of

the tip of the attitude error vector within the ellipse

05 = tan™t \/-E tan|At + tan™t Ey——\/——)\—;- (84)
Ae e P

completes the development of a point on the error trace curve.

The motion is a closed curve when A and o are both rational.
The corresponding period is given by 2kx, where Xk is the least common
denominator of o and A.

The general properties of the motion can be readily interpreted
from figure 8, if one recalls that this figure represents the projection
of the Z axis trace onto a plane normal to the Z1 axis. The fixed space
axis corresponding to the axis of maximum angular momentum projects as
the center of the stationary circle. The motion of the body is bounded
by two circles, concentric with the stationary circle and tangent to the
moving ellipse in the figure. The outer cirecle represents the maximum
Z axis excursion relative to the fixed momentum vector and can only be
approached from the inside. The inner circle represents the minimum
Z axis excursion and is approached from the outside when the ellipse does
not contain the fixed momentum reference point. When the ellipse con-
tains the momentum reference point, then‘the inner circle is crossed by
the Z axis trace and is approached from the inside.

Upper bounds of the error magnitudes are found from (45) and

(46), with the result




(85)
and
T 2 T 2
2 2 1 b'd Y 1 1 1
.= T + T + = —_— + + —
!m‘lm 02T x y o (Kyly) (AXIX) 201, /)\y VA

(86)

These upper bounds consist of the sums of the radial vector magnitudes
and the semimajor axis of the error ellipse, and will obviously be
greater than or equal to the maximum error values.

For cylindrical spacecraft spinning about an axis normal to the
cylinder axis, large rate and attitude errors will be produced by torques
applied about the cylinder axis. Conversely, torques applied about the
normal inertia axis in the spin plane will have little effect on the
spacecraft motion.

Near~-cylindrical spacecraft spinning about a minimum inertia axis,
so that I, is much less than Iy (or Iy), will now be stable if the
2

applied torques do not approach the spin vis viva term I o".

3. ©Step Products of Inertia

a. Time Histories

Crew or cargo movements within the spacecraft may be represented

by equivalent masses ms with variable position coordinates X35 Yy
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and Zye The movements of the equivalent masses fall into two categories.
The first of these includes arbitrary nonperiodic motions along linear
paths to some final position. From previous results for symmetrical
spacecraft, it appears that the largesf rate and attitude errors for

such a motion are less than or equal to those for instantaneous motion

to the final position. The introduction of step products of inertia
corresponding to the final position coordinates of the moving masses

gives a limiting case for this type of motion.

The coordinates of the jth mass may thus be written as

~ 3
Xj = on
Y5 = Y30 g (87)
zy = zjoU(t) J

and the corresponding forcing function is

-
F=- %; %ﬂ[a'(t) + 026(1:)‘J + ?\nyzLé(t) + UEU(t;]}
_ r
+ %;{IXZEé(t) + 02‘6(1:;} - xxxyzjs(t) + cgU(t;}} (88)

where the products of inertia now take on the constant values

n 7
Iyz = }; msX3j0Zjo = BgXsoZso
J=1
, ‘ (89)
LIyz = }: D3¥j0%2jo = ®s¥so?so

=1
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The solution for the rate error becomes

%=ﬁ)€y+(02-?\2) _I——lﬁlj_z)\;(cos At - 2"2)‘2)9-;1% sin At|
X o= -

I I | it
yZ (cos A - 202 ) » Ixz sin At| ) - (—E - —-’iz-)a(t)
o

1
+ ——
Iw/"_ym

- )\2 \/—)\—x Ix Iy
(90)
and the attitude relation yields
I I
a=aq+ o___ A )(yz cos At + =2 sin?\t) +i( g
(Iy Ny A iy Ix M
\ ) (Iyz T I, - ) (Iyz uxz)
- s - s Mt}| -0 - (91)
I,y \ V7 s Ny M

b. Total Errors

The vectorial representation of the total errors reduces to

At -1At

axy=?gq+a3+3hei + Bse o (92)

where '}
) 2) 4 tan-ll:iyz)‘xlx
B§ - .62 (Ixz ) + (Iyz ) e Ixzxny

Y

AeIx 7\yI

Ve

2 2 _itan-l[:Iszx]
- /(ﬁ) . (%) e Uyl p(s) (93)

Ix
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-lrIyzﬁ‘:c (93)
B, = 0'2 - )\2 1 + 1 (Ixz - + Iyz : eitan _Ixzm_] (
2 T I A W\ N
) ) 1t —l& 2! 7‘1
B = (02- 1 1 (Ixz + Iye e- an | Iz My,
=\ T 5 ) T\ J
and
ag = 3 + Chei(a«l—)\)t ‘o ei(c-?\)t N CGeicrt (9%)
where
-itan l{:ngw
Cy = o= A 1 "
an~ L[l
es = (o)1 _1 1&2+ Iﬁz S Eeied o)
’ 2 \ilny =) () P
T B
6 ATy ’AxIx J

The trace of the rate error vector is illustrated in figure 9.

Ibi

|Qxy|

Icl

Rate error trace

Figure 9.~ Rate error trace for step inertia products.
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Once more one obtains a displaeced ellipse. However, the ellipse now

does not intersect the origin.

The radius to the center of this ellipse is

., V¥ (1., \°
a = 0.2 ( XZ ) + ZZ
\ XxIx Any

and the ellipse characteristics are found from

o'
]

) - (%)

)T O

o]
|

and

_ /1 A
%, = tan 1{¢ tan|At + tan 1 —zzi[:é
b Ixz | Ny

(96)

(97)

(98)

The major semiaxis of the trace ellipse is parallel tc the X axis when

Ix > Iy and is parallel to the Y axis when Iy > Iy.

However, the body

axis with the largest rate error is determined primarily by the location

of the center of the trace ellipse. The period of the counterclockwise

motion is agaln the precession period ‘%gl, and the direction of motion

is in the direction of the precession rate A.

To correlate figure 9 with Poinsot's development, note that the

coordinates of the fixed reference point for the polhode are propor-

tional to
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5 =

Q! = - 0 Ixz

° AIy
and . > (99)

ol

0! = e e

yo
My

from (2) and (3). This shift of the reference point from the coordinate
origin to the principal body axis indicates that the meximum possible
angular momentum vector lies along the new extreme inertia axis. Steady
spin, for which the polhode reduces to a point, is thus possible only
about the new maximum of minimum principal axis of inertia. In figure 9,
this principal axis passes through the center of the rate ellipse, as
specified by (96).

The interpretation of the polhode projection about the fixed
reference point becomes somevhat more difficult. Two terms now con-
tribute to the polhode, namely the rotation of the extreme principal
axis and the effective acceleratlon torque produced by introduction of
the step product of inertia. The rotation of the extreme principal axis
yields the initial rates given in (99). The step introduction of the

product of inertia ylelds the additionel rate terms

wo_ Ixz A
(o] IX
and > (100)
w _ Mxlyz
0 I
Y /

The polhode projection (59) corresponds to the rate vector trace in
figure 9, if the reference body rates {x, and &y, include both (99)

and (100).
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The angular position trace for the step products of inertia is

presented in figure 10,

Attitude error trace

Figure 10.~ Attitude error trace for step inertia products.

The trace is produced by a point on an ellipse, which remains fixed with
respect to the rotating radius of a stationary circle centered at the
origin of the inertial axis system.

The radius of the stationary circle is

Iyz 2 Ixz c
a =0 Xllrg +'&Tx' (101)

and the ellipse center is defined by the angle

oy =0t = tan'l(zfgzzzz) (102)

TyzhxIx
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The ellipse semiaxes are found from

o _ A ) <Iyz )ﬁ + <Ixz >2
Iy J)\—}’ Ix \/7;( \/7.‘; f—;

=)

and the angle between the stationary circle radius a and the ellipse

=2
il

} (10%)

[t

o A
<Ix S ) 1y ﬁ‘;)

semiaxis |l becomes

TyzhxIx

=1 Ixz Ay
& = tan l<——-xz y y) (10%)

The position angle of the attitude error vector tip is now

0, = tan™r %tan At - tan'l(lif_i—y—_> (205)
Lyz VM

with respect to the ellipsé semiaxis | bf.

The period of the precessional motion is Zkn, with k taken
as the least common denominator of o and A for rational o and A.

The general properties of motion for the step inertia product
are similar to those for the step torques. However, the fixed space
axis corresponding to the maximum angular momentum vector projects as
the origin of the XyY1 plane, and the direction of the total angular
momentum vector for the spacecraft is not changed in inertial space
during the step crew motion. The spacecraft motion is bounded by two

circles, drawn with center at the origin and tangent to the moving
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ellipse. The nature of these boundaries has been discucsed in the step
torque analysis.

Upper bounds of the errors are

g - o /(Iz:z[x)e . (iy 1y>2 N (02 ; Ne)

S| (=) ()| o

1
+
Iy

for the rate vector and

I 2 I 2
_ yz Xz
lalysp =@ (Xy ) ¥ (7\xIx> M

M

<c+x><1yffy I;:T%)

for the attitude error vector.

+

b\ (Iyz )2 (107)
= v

As vpefore, cylindrical spacecraft spinning about a normal axis
lead to large errors for small products of inertia in the plane cor-
responding to the two large inertias. Some differences in the response
for the step inertia products and that for step torques can, however,
arise after the removal of the disturbance. For the step torques this
removal can occur when the rate error vector passes through the origin
of the body axis system, so that the only residual error 1s a canstant

attitude error corresponding to the attitude at the time of disturbance



- 70 =~

removal. This fact may be of use in the design of pure attitude control
system for spacecraft which use constant torque pulses to reorient the
spacecraft.

For step products of inertia, removal of the disturbance could
also null the rate errors if done when the rate error vector passes
through its initial position. In practice, the determination of this
position does not appear feasible without very exact values for the
spacecraft and disturbance characteristics. The elimination of the body ‘
rate errors by the timely removal of the product of inertia is a very
complex task, and in general will lead to both residual rate and attitude
errors.

L. variable Products of Inertia

A second category of mass movements within the spacecraft involves
periodic motlons, such as mass transfer along a circumferential path.
The uncontrolled motion of the spacecraft is now similar to that of a
spring-mass system with a periodic forcing function. The amplitudes
of the rate and attitude error are correspondingly multiplied by a
magnification factor and resonance may occur for particular mass transfer
rates. The determination of the effects of periodic mass motions within
the spacecraft is thus an essential prerequisite to the analysis and
selection of the spacecraft control system.

There are, unfortunately, an infinite number of possible periodic
crew motions. The best approach to a study of these motions may be the

formulation of a general forcing function, which permits the development
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of stability criteria and rate and attitude errors for a number of
representative periodic motions. Particular time histories can then
be developed for special cases of the general forcing function.

To arrive at such a general forcing function, assume that the
periodic mass motions involve transfer of a single mass and take place
in a spin plane perpendicular to the Z axis or along a line parallel to
the Z axis. If one adopts a sinusoidal vériation of the associated

mass position coordinates, the complex forcing function takes the form
F = Ep cos pt + Ey sin pt + E(t) + Esd(t) + E,B(t) (108)

The coefficients Ej are complex constants which must be determined
for particular mass motions, and p is the period of the motions.
A number of characteristic motions included in equation (108) are

listed in table 4 along with the corresponding coefficients E As

3°
seen from the table, the forcing function equation (108) comprises linear
periodic motions parallel to each spacecraft axis in the spacecraft
reference planes XZ and YZ and circumferential motion in a plane per-
pendicular to the spacecraft Z axis. Other mass motions can be con-
structed by combining the forcing functions in the table and by adding
the foreing function equation (88) for the static products of inertia
with appropriate values of I, and Iyz to the result. Any linear
oscillation in a spin plane perpendicular to the Z axis or along a line
parallel to the Z axis can be developed by this method.

Only the motions described in table 4 will be considered as examples

for the present analysis; the results obtained for these motions can be
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readily applied to more complex motions obtained by linear combinations
of the forecing functions given by the table.

a, Stability Trends

An assessment of the stability trends for the variable products
of inertia can be obtained by examining the forcing function terms in
equation (108) together with the solution functions of tables 1 and 3.
The uncontrolled spacecraft motion will be unstable when the roots of
the governing equations (29) and (34) contain real, positive, nonzero
terms or when the forcing functions produce resonance conditions. From
table 1, it is apparent that the solution functions for &(t), 5(t),
and 5(t) contain only constant and periodic terms. These terms thus
cannot cause divergence of the rate and attitude errcrs.

The solution functions for cos pt and sin pt can, however,
contain divergent terms and may lead to continucusly increasing errors
for special frequencies of the periodic motions. These special fre-
quencies are |p| = |o| and |[p| = [A]. In the first case, the rate
errors remain bounded for all finite values of Ep and Eq, but

precession of the spacecraft may result unless

Eg + iEy

I
O

i

when p =0 and > (109)

Ep - 1E1

i
o

J
when p = -0, Since equation (109) holds for all the values of Ep and
E1 1in table 4, this precession will not occur for the examples considered

here.
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In the second case, when |p| = |A|, both the rate and attitude
errors will tend to diverge for nonzero values of Ep and E;. Mass
motions with this period thus exhibit definite trends toward instability
and should be avoided.

There is, of course, one other instability that may occur for
the present solution. Fram the governing equation (29) for the body
rates, one notes that the rate error will diverge when A2 < 0, so that
I,>I1,> Iy ori Iy > I; > I;. This condition results when the Z axis
is an intermediate axis of inertia and agrees with the well-known fact
that the undamped spacecraft spin is stable only if the spin axis is an
axis of maximum or minimum inertia. In terms of the moving mass param-

eters, one may thus write

2 2 2 2
y n3(Yj0 = 2jo ) - me(¥so = Zgo™)| < (Iyo - Ip)
3= >
110
T n . 7 ( )
2 2 2 2
j;t m5(x350° - z30°) = mg(xgo™ = 2zgo EJ > (Ixo - Iz0)
LJ=1 y

or

~—n = w

2 2
/. mj(yjo - Zjoe) - ms(y502 - zg55°)| > (Iyo - IZO)
~ ~ (111)
n
/T| mj(xjog = Zjog) - mS(x802 - Zsog) < (IXO - IZO)
L=t i )

as the alternative conditions for instability corresponding to the

assumptions of this analysis.



- Th -

The conditions in this sectipn will serve to indicate poscible
instabilitie§ for the rotating spacecraft. Since the rate and attitude
errors for these instabilities will rapidly exceed the small angle and
rate assumptions, time histories for these motions will not be discussed.
If the unstable motions do occur, exact computer solutions should be
used to assess their effects.

b. Time Histories

From equation (108) and the solution functions of tables 1 and 3;

the rate error becomes

+ Ep5(t) + E5 cos At + Eg sin Mt (112)

where

> (113)

1 2 Ey
E6 =% (E5 = A°Ey) - P(}\—Q—-?jl

while the attitude error is
~ [- E1 -~ 10E En + 1ioE
a=a+ S 1 2) P ; > 0 cos pt = Elé}-——5—2>sin pt
0 - p A - 1p AT = p

+ <_1_.§) li(?\Eé - i0Es)cos At - (ABs + i0Eg)sin ?\t]

a2 = A

+ E7(cos ot - i sin ot) (11%)



where

c. Total Errors

pE, - 10E,

The vectorial representation of these errors yields

~ )_t -. -
Oy = Sy + Bg + B+ Bse I, Bt Bre

with

and, from (18)

GI=3’I+i[Cu+C5e

By

Il

EhS(t)

(6° - p2)(A° = p?)

(115)

(116)

(117)

i(o+N)t Céei(c-x)t . C7ei(6+p)t N CBei(c-p){]

(118)
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where
. Dh, B‘:) B(T. B7 \
Gy = 18y + PR N Sl D tea D
By
Cg = =
> g+ A
Cp = - 5 > 119)
6 P— (
B
C7 = - 6
0'+p
Cg = = BT J
c~-DP

The total error relations given by equations (112)-(119) may now be
evaluated for particular motions by substitution of the corresponding
coefficients Eg, E;, Ep, Es, and Ej from table 4. Only the
vectorial representations and the upper bounds of the errors will
usually have to be considered in an assessment of the effects of mass
motion on the spacecraft motion.

To determine the vectorial traces one needs values for Ey, B,
B5, Bg, and B7. These expressions have been developed and are shown
in tables 4 and 5 for the motions described in table 4. The polar plots
of the rate errors now follow directly from equation (116) and are

graphed in figure 11 for a number of typical motions.
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(a) Circumferential mass motion. (b) X-axis mass oscillation in

XZ plane.
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(¢) Z-axis mass oscillation in XZ plane.

Figure 11l.-~ Rate error traces for periodic inertia products.
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All of these traces are generated by a point on an ellipse, whose center
moves along & second ellipse centered at the origin of the body axis

system. Figure 12 shows this development of the rate vector trace.

Rate error trace

Figure 12.~ Rate error trace development for
periodic inertia products.

The direction of the ellipse semiaxes |a| and |c| is first located

by the relation

%y =0 8> 0
3 5 (120)
q)a = 5 a - <0
The position angles for the fixed and moving ellipses then become
@b = tan-l[%-tan p{]
and (121)
o, = tan-l[9 tan 7\%
c
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The fixed ellipse has semiaxes |a| and |bl, and the moving ellipse
s has semiaxes |c] and |[d]l. The constants a, b, ¢, and d are

determined from (116) and (117) as

a = Bg + B7 W

% b = Bg = B7

1 $ (122)
C=B)++B§
d=3y-3 |

where the values of the Bj terms are taken from table 5.
The direction of motion is determined by the signs of p and
. A, and the rate vector describes a closed curve when p and A are
both rational. The period of motion is 2kr, where k 1is the least
common dencminator of p and A.

The rate error trace results from the oscillation of the mass
with respect to the geometric body axes (p-ellipse), added to the pre-
cession of the geametric body axes about the principal body axes

% (A-ellipse). The fixed reference point for the trace falls on the
origin of the geametric body axis system since the mass oscillation
takes place about the origin.

Characteristic traces of the attitude errors for the periodic

. motions are illustrated in figure 13.
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19
(a) Circumferential mass motion. (b) X-axis mass oscillation in

XZ plane.

19

(c) Z-axis mass oscillation in XZ plane.

Figure 13.- Attitude error traces for periodic inertia products.
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These traces are produced by two ellipses which rotate at the spin rate,

as sketched in figure 14.

tcl

bl

T lal

19|

Attitude error trace

Figure 1k.- Attitude error trace development for
periodic inertia products.

The center of rotation is defined by the coordinates

By B5 B ., B

a = =iE) + + + ! £102)
s S e P 0 - \1e2)
and
2
q)a=0 a>O, a>o0 w
T 2
(I>a=.2- a<O, a>o
> (12k4)
2
¢a = a=>0, a<o
_ o 2
@a = a~<o0, a<o )
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The direction of the ellipse semiaxes |bl and {d| is located by the

angle ot, measured from the positive Y; axis when &z = 0 or @ and

b

measured from the negative X1 axis when ¢, = 5 or %?. The angular

coordinates within the ellipses now become

-lrb T )
%, = tan T tan pt
. - —~

and > (125)
— -
@d = tan-l 2 tan At
d
- - J

while the ellipse semimajor axes |bl, |c|, ldl, and {e| are derived

from
w
e )
o+ p 0c=-p
B6 )
C = - -
o+ D o=-7
) (126)
B
(BB )
o+ AN o0=2A
and
By )
e == +
(? + A O0~QA y

The motion is a closed curve when o, p, and A are all rational. The
precession period is Z2kr where Xk 1is the least common denominetor
of o, p, and A.

The attitude trace for the spacecraft with periodic inertia
products exhibits a change in the direction of the angular momentum

vector in inertial space. This rotation of the momentum vector to the
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center of the p ellipse results from the initial mass acceleration
terms, which exert a torque on the spacecraft. The motion, in body
coordinates referred to the fixed momentum reference point, can be
visualized as the sum of the mass oscillation with respect to.the body
axes (p-ellipse) and the precession of the body axes about the principal
axes (A-ellipse). In the intermediate inertial coordinates, this motion
is rotated through the angle ot.

Values for the upper bounds of the rate and attitude errors may

be calculated from

1% |1im = 1Bl + 1351 + |36l + |37 (127)
and
BLL B5 B6 B7
! _am +
RelSE™ | ai e S D iy D

| B

Bs |,
|c - A

+

By |
- 108
, (128)

l
o+ A o+ pl lo - D

by using the coefficient equations for Ej and Bj from tables 4 and 5.

From an examination of these coefficient equations, one notes
that the maximum error relations for small disturbance frequencies p
yield the error limit terms corresponding to the introduction of step
products of inertia. Both principal-axis-rotation and acceleration
terms result for the circumferential motions; only principal-axis-
rotation terms appear for the radial and vertical oscillations. A first

estimate of the limiting errors for the periodic inertia products can
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accordingly be obtained from the appropriate step inertia product terms,
when the disturbance frequency |p| is much less than the precession
frequency |Al.

As the disturbance frequency increases, the error limits also
increase. As expected, divergence of the errors is predicted when
[pl =1Al. For a further increase in the disturbance frequencies, the
error 1limits continue to increase.

When the disturbance frequency |p| is much greater than the
spin rate ¢, the error relations for the periodic inertia products
become directly proportional to |pl. Doubling of the disturbance
frequency will thus double the resultant error limits, and large errors
can be introduced by small, rapidly oscillating masses which may occur
in onboard motors, generators, or other equipment.

Several additional trends are indicated by *tatles 4 and 5. For
circumferential motion, maximum errors result when the sign of th
angular velocity p of the motion coincides with the sign of the pre-
cession rate A. Motion at a negative spin rate (p = -g) will eliminate
all but the initial acceleration effects. Motion at a negative or posi-
tive spin rate (p = fg) also nulls the errors caused by vertical mass
oscillations, but does not significantly affect the errors caused by

the radial mass oscillations.

D. Characteristic Disturbances for Symmetric Spacecraft
A large number of spinning spacecraft will be symmetric about their

spin axis, so that I = Iy = Iy. These spacecraft include rockets and
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ballistic missiles which are spin-stabilized to maintain their flight
path angle under initial body rates; ummanned satellites which are spin-
stabilized to maintain a fixed inertial position for communication and
observation purposes; and large manned space stations which provide an
artificial gravity field for their crew. A reduction of the general
solutions developed in the previous chapter to the special case of
symmetric spacecraft would accordingly have many applications.

Most of the resultant solutions have been previously obtained by
various approximation and numerical integration technigues and are
scattered through the literature (refs. 4-20). The results in this
chapter thus make no claim to originality, but do accomplish two impor-
tant objectives.

The first objective involves the determination cf the form of the
geometric error traces and of the maximum error limits for the varilous
disturbances. These important properties of the motion have been only
parcially treated in the literature, and tend to be obscurea by the
component form in which past solutions are primarily expressed. The
simple trace geometry, that results from the complex vector representa-
tion of the present analysis should be of considerable value.

The second objective is the comparison of the approximate solution
with applicable previous results. This comparison will point out the
principal differences between the present and past solutions and will
summarize the trends of the motion with variations in the disturbance

and spacecraft characteristics.
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The discussions of the polhode projections and of the motion
representation by means of the unit sphere will not be repeated here.
If desired, these relations can be readily deduced from the analysis
for the nonsymmetric case and the equations of this chapter.

1. Impulsive Torques

For impulsive torque disturbances of the form
M =My + iMy = ™(t) = (T + iTy)8(t)
the forcing function (48) becomes
F = %‘-[:é(t) + i)@(t)] (129)

The total rate and attitude error equations (49) and (50) yield

H

Qxy = Bxy + Zcos At + 1 sin At) (130)

I
and

a =3+ -%}{zsin At - 1 cos M) + (sin ot + i cos ot)] (131)
0lz

Initial error contributions in (130) and (131) are

~

Loy

ﬁ&yo(cos At + i sin At) (132)

and

~ iqur
o =a.(cos ot - 1 sin ot) + 1 ° [Kcos ot - i sin ot)
o oI,

- (cos At + i sin %tﬂ - (133)

from (40) and (41).
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The total error vectors for the impulsive torques reduce to

By = ey + (%)J?‘t (154)

and

ar = ag + i(c—t:é‘;—)[:l - ei(c-’-?\)%} (135)

where the initial condition vectors are

By = yoe (136)

and

. \
A = ap + i(%@.)(l - el(“”‘)t) (137)

oI,

The rate vector trace for symmetrical spacecraft with initial rate

and attitude errors is shown in figure 15.

Rate error trace

Figure 15.- Rate error trace for initial conditions
and symmetric spacecraft.
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The curve traced out by the Exy vector is a circle whose radius is the

~

magnitude of the initial rate error vector Qxyo' The rate vector Qxy

rotates with the precession rate A to generate the error envelope.

The attitude error trace, shown in figure 16,

Attitude
error
trace

Q
X0 yo
as

ol

Figure 16.- Attitude error trace for initial conditions
and symmetric spacecraft.
is also a circle. The center of this circle is determined by the
vector ag + 1 Eg%fg, and the radius of the circle is the ratio of the
inplane and spin momentum. The period of moticn is Eggex, and the
attitude error vector moves in the direction of spin.
Maximum error values can be derived from figures 15 and 16. The

result is
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%y nax = V%0~ + %o (138)

and
%) oy = ‘/(QO - Qu + cos )2 + (6, + A + 2 sin 8)° (139)
where
\
2 2
a = I on * QYO
gy
and > (1%0)

e
o - 0

From (139), it can be seen that the spacecraft inertis ratio L

z
dces not affect the maximum rate error. The inertia ratio does, however,

enter intc the relation for the maximum attitude error which decreases
with a decrease in the inertia ratio. Spacecraft, whose inertia ratioc
approaches that of a flat disk, will thus yield the minimum total atti-
tude error for a given set of initial error values.

The error relations developed here have been partially described by
Ieon (ref. 5) for the case of a spinning symmetric rocket, and the
applicable present results agree with his conclusions. His work does
not, however, develop the detailed trace representation or the maximum
error relations. Thomson (ref. 6) includes the trace representations
for the initial errors, but his geometrical interpretation is incorrect
(see page 201). The inifial error vector ag and the initial body rate

Qxyo are not generally orthogonal, as depicted in Thomson's work.
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The error traces and maximum error values for the impulsive torques

can be again found by setting %_c_ = oy EIX = Qyo’ and @, =06, =0 in

equations (136) -~ (140) and figures 15 and 16.

2. Step Torques

For constant step torques described by
M= My +oiMy = T(t) = (Ty + iTy)U(t)
the foreing function (66) yields

F = 2[a(t) - 20(+) (1)

for the symmetrical spacecraft.

From (67) and (68), the error time histories are

ey = ?ixy + E—I['_'sin A + 1(1 - cos ?\tD (142)

and

_y . Tl 1 . _ 1 L s
or.—a+GIz[?\I X(cos At + i sin At) o'(coscri:. i sin o‘tﬂ (143)

The total error vectors are

Oy = ?ixy + i<7\TT>(l - eiM) (1)

and

ap =+ (&%‘) (%eic't ) %ei(cﬂ\)t ) ?1; (145)
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Curves for the rate error trace are given in figure 17.

Rate error trace

Figure 17.- Rate error trace for step torques and
symmetric spacecraft.

The rate error trace is a displaced circle whose center is located by

the vector %%. The radius of the circle is %&, and the period of the
. . . 2n
precessional motion is \—— .

A

Curves for the attitude error trace are depicted in figure 18.

2 2
Tx= + T
This trace is generated by a point on a circle of radius )L—EXE——JL—
OALg
whose center moves along the circumference of a displaced circle with
fm 2 2
+ T
radius T—X.__TL
oAl
by the vector - “%L‘ and the period of motion is 2kr, where Xk is
01,

b4

. The center of this displaced circle is located

the least common denominator of o and A for rational o and A.
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oy ce
uMZ

o] M

Attitude error trace

Figure 18.- Attitude error trace for step torques and
symmetric spacecraft.

The maximum values of the errors become

21" + 1y°

= 146
Iﬂnqr'max IIZ _ I'O’ ( )
and
[+ 1 Jr2 + 7,2
o f14m - [;——5 * i}“‘—cg—L (247)

The error vector relations for the step torques and symmetric space-~
craft agree with Thamson's results (ref. 6, pages 198 and 207). Maximum
attitude error limits for this disturbance have also been developed by
Suddath and include the residual errors after removal of the disturbance
(ref. 14, page 8). His limits, which are smaller than or equal to the
limits obtainable during the torque application, do not represent the

worst case and are thus somewhat misleading.
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Note that the error limits are inversely proportional to the inertia
difference IIZ - Il and predict minimum errors for a disklike config-
uration. When applied to a sphere the limits predict divergence,
confirming the statement that a sphere cannot be spin-stabilized.

3. Step Products of Inertia

When step products of inertia of the form

n
Iyz = ;ﬁ m3XjoZjo = MgXgoZgo

occur in symmetrical spacecraft, one may introduce
Ipg = Ixg + ilyy (148)
to get the forcing function
F=- %& ?\Eé(t) + UgU(t)] - i[S(t) + 026(1:)] (1%9)

from (88).

The error solutions (90) and (91) give

=+ (Il‘z> ("2 - )\2>(cos At + 1 sin At) - g 18(t)| (150)
Yy = &y 1 A A

and

@ =a+ i(%@-)l} - (0 - AN)(cos At + i sin ?\tﬂ (151)

for the symmetric spacecraft.
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In vector form, one has

_ Irz\| (o - 2%\ in6 52
%_%4.(1\)( = Z)e _T+1b(t) (152)

and

oy = Z,I o+ i(i—;—z-)Eeiot - (0 - 7\)61(0+}\)t] (153)

The polar graph of the rate error is illustrated in figure 19.

Rate error trace

Figure 19.- Rate error trace for step inertia products
and symmetric spacecraft.

The error trace is a displaced circle with center determined by the

2

vector =~

2 2
The radius of the circle is <9—X§;5—> IXZE + Iyz2

and the precession period of the motion is |%§|.
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The graph of the attitude error for the step product of inertia is

given in figure 20.

—x, ,
(\\ (4]

Attitude error trace

Figure 20.- Attitude error trace for step inertia products
and symmetric spacecraft.

The error trace now 1s produced by a point on a rotating circle with

o= A / 2 2 . .
radius (—73-—) Ixz ‘+ Iyz which moves around the circumference of

———— .

a circle with center at the origin and radius (%&9 J&kzg + Iyzg' The

period of motion is 2kw, where Xk 1is the least common denominator
of ¢ and A, and the trace curve does not close unless ¢ and A are
rational.

Maximum error values become

3 e -

for the rate vector and

202 - Rg
AL

20 - A
_Eif__l /Ixze + Iy22 (155)

I,° + Iyz2 (15%)

i

| 114m

for the attitude vector.
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The errors predicted by (152) to (155) do not agree with previous
results (refs. 4, 5, 6) for product of inertia disturbances. This might
be expected, however, since the previous analyses have neglected the
energy associated with the introduction of the product of inertia.

The limiting errors (154) and (155) diverge for a spherical con-
figuration. Attitude error bounds for a long slender cylinder (A - -q)
are three times as large as the attitude error bounds for a flat disk
(A - o). Rate error bounds for these limiting configurations are,
hovever, equal.

4, vVvariable Products of Inertia

Forcing functions, stability criteria, and solutions for variable
periodic products of inertia and symmetrical spacecraft retain the
form (108) to (119). The symmetric spacecraft does, however, permit a
simpler combination of the inertia products and ylelds a better under-
standing of the effgcts of the spacecraft parameters on the error traces.

Consider a product of inertia of the form

Iz = Ixz + ilyy

Qzo(xo + 1yo) (156)

as produced by the motion of a single mass. Circumferential, radial,
and vertical oscillations which yield this inertia product can now be
examined.

a. Circumferential Mass Motion

The circumferential mass motion begins at the point
Xo = T c0s pty, Yo = Tp sin pty, 2z, and continues at a constant

angular rate p around the perimeter of the spacecraft.
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x = ry cos p(t + tg)
Y = ro sin p(t + t,)
z = z5U(tg)

2

- 2
o= JXo *+ Yo

The assoclated position coordinates may be written as

3

) (1)

J

The solution coefficients are taken from table 5, with the result

3

2 .2
134:11'2[(“*13) - -

2)+2]
2

I A-p
I
B rzp
B = - 71 5
. (158)
o Iy.,(0 + p)
G s £
By =0 J
PIrzrgO'-)\ W
O = - — |02 - 22
. - Irzr(0+p)2-(7\2-P2)+ p ]
5T o+ M- D) 2(o + 1)
$ (159)

Plry

Cp = —2T2
6 2(o - NI

(G + P)Irz
(A = p)I

Q

7:
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The rate and attitude error vector equations (116) and (118) reduce

to

~ I 2 2 2

Ry = Gy + ;z [(o+p)}‘:l()7\-p)+§]ei>\t_ge-1)\t
- ..(-S.:-_-Pf eip.b + ib(t) (160)
(A - p) ,
and |
o 1r J[p(e0 - x)] +[(a +0)7 - 0%-0%) 3 T alemt

T 1 0% - A2 (o + A)(A - p) 2(o + A)

e | oMt o+ pl i(o+p)t
[2(0 - x)] [>\ _ :] (161)

The rate vector trace, illustrated in figure 21,

i ¢

Rate error trace

pt

Pl

Ict

Filgure 21.,- Rate error trace for circumferential mass motion
and symmetric spacecraft,
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is produced by an ellipse, whose center travels along the circumference
of a circle.

The radius of this circle 1is

2 2
(0 + p)2|V Ixs" + Iy

7\-p I »

(162)

and the ellipse center is determined by the angle pt, measured from the
axis corresponding to the radial inertia product. The ellipse semiaxis
Ibl also lies along the radial inertia product axis, and the precession

angle of the rate vector tip within the ellipse is

oy = tan-lcﬁ tan—llt) (163)
Where
—~ | . A
2 I
b = (i * P) - (7\ + p) X? vz
| .” P
and : > (164)
¥ [. 2 2
¢ = (U + P)2 - ?\ Ixz + Iyz
AN=7p I
- J

define the ellipse semiaxes.
The attitude error trace in inertial space, shown in figure 22, is
derived by a rotating ellipse whose center translates along the cire

cumference of a displaced circle.
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?\ Allitude error trace §/
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Figure 22.~ Attitude error trace for circumferential mass motion
and symmetrlc spacecraft.

The center of the displaced circle is located by

2 2
p(2o - M)\ VIixz™ * Iyz ' (165)
a = 2 2 I \+Y/)
g = A
and the circle radius becomes
o _ 2

Jrg© +
b= (SER\Voxe F e (166)

AN-oD I

The center of the moving ellipse is specified by the angle (o + p)t
and the semiaxis |c| rotates at the spin rate.
The angle to the attitude vector tip and the semiaxes of the ellipse

are found from

o, = tan’l[% tan K%] (167)
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2 )

and
[ 2
o = (°+P)2'(7\2-P) p?\.‘ Ixz™ + Iyz
U o - A (o + NI
- . [T 2 2
i = (0+p)° - (3% .p%), po | Vxa” + Iy
‘ L ANep g=-2 (o+2A)
respectively.

) (68)
)

Limiting error values can be computed from the upper bound relations

(169)

2 2 2
_Hle+p)" = (N =-27) o P
| 2%y 1am = RS I b
)\-P 2 2
—1—5————.-‘-—2
(o + p) JIxz" * Ty
ECE E
and
o o 2
I [ SRS TN TR GCSPs DU
1im 2 -2 (o + M)A - p) 2o + M)
+ D +12 +p ‘JIXZQ * Iyz':
" a2(o - ) AN=7p I

These results indicate that the rate and attitude errors for
cumferential motion will be larger than those for the static

of inertia, for which p +vanishes.

an increase in p and tend to diverge as p approaches A.

of

p greater than A, the error continues to increase with

in p.

The limiting errors incr

'..)
-3
O
S

the cir=-

products
ease with
For val

ues

an increase
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For very small disturbance frequencies (|pl << |Al), the upper error

bounds are given by

|202 - Kel VIx22 + Iyz2

|Qxy|iim - x| T ' (171)

I

and

e

belyim (172)

2 2
20 - 7\\ ViIkz + Iyz
A I

As might be expected, the maximum errors now resemble the error
bounds for the step products of inertia. The resultant bounds are
essentially independent of the disturbance frequency.

For very large disturbance frequencies ( p > c), one has

, 2 2
_ Yl J&xz + Iy,

| %y |14m = (173)

I

and

2 5
[T+ Iys

I

p(50 = 3A)
0‘2—7\2

~

'a|lim =

(174%)

so that both error bounds increase linearly with |p| for this case.
The relations (171) to (17%) can be used to determine error limits
and their variation with the disturbance characteristics, when the
absolute disturbance frequency is much less than the absolute precession
rate or when the absolute disturbance frequency is much greater than

the spin rate.
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b. Radial Mass Oscillation

The radial mass motion begins at the point O,

defined by the coordinates

and

X = X5 sin pt
Y =¥, sin pt
z = z0(t)

0, =z and is

O

The solution coefficients, taken from table 5, now become

Cy

B = ipIry 1. o + 20M + p2
BETT Oz "2 - o2
_ ipIyy
B5 = 2T
. 2
B, = i(o + D) Iyy
6 2(A - p)I
. 2
_ '1(0 - P) Irz
B7 2(A + p)I

il

i

ip(20 - NI,
(02 - A3)1
1

1pIlyy 1

[+

2

+ 20\ + p2

(o + NI||2

ipTyy
2(0 - A)I

i(o + p)Ipg
2(A - p)I

i(o - p)I,

2(N + p)I

2 . o2

)

77)
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Rate and attitude vectors are

~ ipI 2 2 -
Oy = Ty + rz 1_2(0? +20'>\+p)ei?\t+ei?\t
o1 22 - 52

+ [(a + p)g}eipt _ [Pga - p)” | -ipt (178)

p(A - p) (A + p)
and '
_~ DIy J[2(20 - A) 1 2(0® + 20N + p2)| i(o+n)t
0 =ag - 2; [0_2_7\2 ~(0'+')\>E.- )\2_p2 €

- _:E_)ei(“*x)t J|ot+p | (et [ o-p | i(o-p)t
o~ A P(}\'Pje pi7\+p5e
(179)

as determined from substitution of (176) and (177) into (116) and (118).

The rate error trace is shown in figure 23.

-1 ! z>
tai\an <‘L>

l’(Z

Q
i Pyl

® Rate error trace

tdl

Figure 23.- Rate error trace for radial mass oscillation
and symmetric spacecraft.
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This trace is generated by two ellipse envelopes, whose semiaxes | a|
- and |c| 1lie along a line normal to the radial product of inertia axis.

The characteristics of these ellipse envelopes are developed from

___p[ + 20N + A2 \]Ixz +Iyz

7\2-p2

2 2
b = [j(cg + p2)A + 2@2‘] VIxz™ + Iyz
(62 + 20\ + p° :] \/Ixz + Iyz

> (180)

and the precession angles within the ellipses become

~

1

-1z
o, = tan gtan pa
L

g | (181)

1)

n
ola)

®, = tan |= tan NJ

-

A

The attitude error trace 1s also derived from two ellipses and

takes the form illustrated in figure 2k.
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o ‘llﬂ
1 tan 3

Ibi
Tel

1d)

tcl

Figure 2h.- Attitude error trace for radial mass motion oscillation
and symmetric spacecraft.

The ellipse semiaxes |[b| and |d| initially coincide with the radizl-

inertia-product axis and precess at the spin rate. The center of the

inner ellipse is given by

p(Eo‘ - A) \/Ixz + Iyz

R (182)

and the semiuxes for the two rotating ellipses become

— 2 2
b = p(o + ?\)]\/Ixz + Iyy

2 2
\_?\"p I

2 r
(o + pE] VIkz® + Iyza
c = 5

N - p I

(183)
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. 2 2
| d—( D )r0'2+20?\+p2 o | JIxz" * Iyp
T \o + A

) N
R o - A I (165)

o = P '.0'2+20'7\+p2+ A ﬁ\/Ix22+Iyze

from (179). The precession angles within the ellipses are

-
tan'l[% tan-lpt

% £ ‘|
and (184)

1 R
tan’l[:-g- tan” At

—

it

%3

The upper bounds of the error magnitudes become

(o + p)°
(A - p)

2(02 + 20\ + p2)
A - p2

2 2
Ipl VIxz + Iyz

21

1l- +

PR

!Qxyllim =1+

(o - p)?
(A + p)

(185)

and

220 =N}, 1, _20c®+20n+p®) 1

g2 - A2 o+ A A2 - p2 g = A

P
/ 2 2
P I + T
| | sz YZ (186)

2

l“llim =

o + P
(A - )

oc-p
(A + p)

These error limits again increase as |p | increases and diverge as |p|
approaches l%l.
When the disturbance frequency is very small (lpl << IXI), one

may use

) [ 2 2
o?| VIxz + Iyz

Qxyllhn =5 T

> (187)
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and

2 2
I + 1
[0} l XZ yZ (_188)

|°‘llim - |$: I
as the approximate upper bounds for the rate and attitude errors. These
upper bounds correspond to the maximum principal-axis rotation for the

inertia product and do not contain the disturbance frequency.

When the disturbance frequency is very large (lpl >> c), one has

2 2
2lp| I,~ + Iy,
I

(189)

ngyllim =
and

l“llim =

(190)

2
2p(20 - N)| VIxz™ + Iyz2
02 - N2 | I

The upper bounds (189) and (190) increase linearly with |p|.

A comparison of (171) to (174) with (187) to (190) shows that
the errors for the radial mass oscillation will be smaller than those
predicted for the circumferential mass motion, when the disturbance
(p, Iy;) and spacecraft (o, A, I) characteristics are equal.

c. Vertical Mass Oscillation

The vertical mass oscillation comprises a periodic mass motion,

which starts at the point X0, ¥o, O and is described by

Y =Y, (191)

N

{
oN

w

‘5,‘
!
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at

The solution coefficients for this motion are

i : B, = - io(® - P)Ipy |

(X2 - p2)I
B5 =0
) (192)
B - i(02 = p2)Ipy
2(A - p)I
_ i(U2 - P2)Irz
¥ REESE:
J
and
- o - _~iPlr )
4 (o + N)I
. - 1p(0® - p°)Iry
> o+ N(A -1 )T
Cg =0 g (193)
i(o - p)Ipy
C7 - ————
2(A - p)I
og = i(o + p)I,
2(A + p)I )
The error vectors, as developed from (116) and (118), yield
. ~ 1(c®

; Uy = Oy =

2 . 3
_____-—(xg‘ 2 ;i;z [2pei7\t - (A + p)e™Pt + (A - p)emPY| (204)
2(A° - p
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and

o~ I ) o 0® = p2\ 1(0-A)t
ar = ap + T p— xt} - AE - p2 e

A=-D A+p

+f{zrg)eme, (2rg)ton] (1)

The rate error trace for the vertical periodic motions is given

in figure 25.

x | NN x

|Q

v | Rate error trace f o |
xy

Figure 25.- Rate error trace for vertical mass oscillation
and symmetric spacecraft.
This trace is generated by a point on a circie, whose center traces out
an ellipse in the XY plane. At time zero, both the ellipse semiaxis
'al and the circle radius vector lie along an axis, which is perpendic-
ular to the mass position radius. The ellipse semiaxes are computed

from



- 3 > (196)

and the cirecle radius is

2 -2
p(0® - p?) \/Ixz + Iyz

)\2_p2 I

(197)

The location of the center of the circle along the ellipse is

o, = tan-l[§ tan p%] (198)

and the rate vector tip precesses at the rate A within the circle.

The attitude error trace is sketched in figure 26.

<
=<

. ot
:

Attitude error trace
<| 1] \ ,?
4
191 A

Ixz bl

tan-l(_'xz_) q E |

Figure 26.- Attitude error trace for vertical mass oscillation
and symmetric spacecraft.
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The trace curve is produced by a circle which travels along the p
ellipse. Both circle and ellipse rotate at the spin rate o, and are
initially alined with the radial product of inertias axis. The center

of the ellipse is determined from

2 2
./I + I
a__(p\ XZ YZ
o)

= 199)
+ 2/ I (
and the ellipse semiaxes are given by w
B 2 2
b - p(oc = A) JIxz t Iyy
L?Q - p2 » I
and > (200)
oA - p° \/IXZ‘ * Lyz
Cc =
7\2 _ P2 I
— J

The center of the precessing circle 1is at

=1 c -
&y = tan [? tan p%} (201)

and the radius of the circle becomes

R S I LA .
" (0 + N(A° - p?) I (z02)

This radius moves with the precession rate A within the circuiar
envelope.

Values for the upper limits of the rate and attitude error mag-
nitudes may be calculated by using

ol + L - p{ + |N+p IXZQ ! Iyzg
o] + 2 L

I

_| g2 - p2
IQxyillm lxg ~ p2

(203)
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and
2 2
laliim = || —2={2 + s W \ V(LR YIRS YA RV
LI | RN A -p2l) 2\X+pl T Ix-p I

(20k)
The upper bounds of the errors increase as P increases. The instabil-
ity trend at |p| = |A| is obvious from (203) and (204).

If |p| is small (| p| << |Al), these equations yield

(205)

| %y |14n = l%j

and

2 2
+

~ UI Iyz
alys. = 1= 206
@ i lkl 1 (206)
so that both error bounds are approximately independent of |p| and

contain only the terms associated with the principal-axis rotation.

If |p| is large (|p| > o), the upper bounds reduce to

2’P|\’Ixz + I 2

Yylim = (207)
and
) 2
|al1sn = 2,%] \/Isz Ty (208)
Z

as a first approximation. Both these error bounds are directly propor-
tional to |p|.

From (171)-(174), (187)-(190), and (205)-(208) it can be seen
that the error bounds predicted for the vertical mass oscillation closely

resemble those developed for the radial mass oscillation. The attitude
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errors Tor the periodic vertical motions will, however, be somewhat
lower than the attitude errors for the periodic radial motions, when
the disturbance and spacecraft characteristics are equal.

In concluding this discussion of the variable products of inertia
for symmetric spacecraft, one observes that the variation of the limiting
errors with inertia distribution is similar to that described for the
step products of inertia. Flat disk configurations yield the minimum
errors, and spherical configurations are unstable. However, the magni-
tudes of the rate and attitude errors are now considerably larger than

the errors produced by the step products of inertia.

E. Controlled Spacecraft Characteristics

1. Governing Equations

The motion of the controlled spacecraft can be defined by a method
similar to that for the uncontrolled case. The torques produced by the
control system are now particular functions of the measured vehicle
engular position and rate. These torques can thus be considered as
foreing functions applied to the uncontrolled vehicle equations. The
solutions of the resultant differential equations yield the spacecraft's
angular position and rate errors, as before.

The anslysis begins with the selection of a control torque command

and th

[0}

development of the corresponding equations of motion. As an

example, « linear control torque g will be introduced as
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t

t
+ i[%lyﬂy + Kgyk/— Oy dt + K3y0 + . . {] . (209)
where the Kjk are the physical control gains that must be provided by
the stabilization system. The error signals are amplified by these
gains, and a control moment, whose value is equal to the sum of the
amplified error terms given by (209), is then applied to the spacecraft.

Particular nonlinear control torques, which lead to governing
equations of the form discussed in the literature (refs. 21-24) could
also be considered. The present application will, however, be restricted
to a discussion of the linear control functions in (209). These linear
control laws can be readily mechanized and allow a simple interpretation
of the mechanics of motion for various types of sensor inputs (such as
those derived directly from rate gyros, stable platforms, or Euler
angle computers).

In an analysis of the spacecraft's stability; it is easier to

deal with nondimensional control gains. One may define such gains by

~
K K K
Ky = ~lx Koy = X kzy = 2X
NIy My Iy oAy
and > (210)
K K K
ALy Ay Iy oMLy )
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so that gy and gy become

\
8x = E“lx“x*kex( y)/ ﬂydt+ck5x9+...]
and > (211)
&y = Etlyﬂy + k2y< > [ Qo dt + okzy® + . . ]
J
The equations of motion can now be written in the fo
AT )
EZ + | LY =g . + T
X ( I, )Qy &x X
and & (212)
¢ ATy
by - ( T e = gy + Ty
J
/
where
n
£ 1

3=
n
+ T J(ZJ J - YJZJ) - ms(zsys - ys"s)
3=1
&
=L dm - m:]z:(02ys -~ 20%s + ¥i) + Z:ys
T N | IO ARG T3 33
J=1

+ ms[zs(cgys - 20%xg + ¥s) + ESYBJ}

(213)
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n

Ty = I_ly' My + o(Iy; + Iyo) + Z my(z59y = v529) = me(zs¥s - veis)|o
J=1

n

+ E: mﬁ(szj - zjxj) - mg(xZg - z.X.)

J=1

n
T‘ . .o .

= %y- My v mglzy(otxg + 20§y - X) + g
5=1

- ms[%s(chs + 20y - Xg) + stéi} _ (214)

with the spin rate o taken as constant and positive.

The Euler angle relations may be expressed as

(215)
9+o(p=9.y
and the simultaneous solution of (212) and (215) will specify the
spacecraft's motion.

2. Control Requirements

In practice, the spacecraft's rate and inertial position errors must
be kept within specified deadbands which are determined by the spacecraft
mission requirements. Control of the spacecraft to these accuracies may
be provided by a reaction jet system and a momentum storage system, and

the torques that must be produced by the system actuators can be readily
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determined if the required control torques about the body axes are
specified. With a reaction jet system, these torques are generated by
variable-mass-flow or pulse-modulated jets, and for a momentum‘storage
system composed of control moment gyros or reaction wheels the corre-
sponding torque components along the gyro gimbal or reaction wheel axis
are computed and applied. Concern will be given to the actual mechaniza-
tion of such systems later; for the time being only the body axis torques
necessary to stabilize the spacecraft will be developed.

Since the magnitude of the angular error in inertial space is equal
to the magnitude of the body-referred angular error, the damping of «
and Qxy will assure the adequate stabilization of the spacecraft with
respect to both body-fixed and inertial frames. The prcblem is thus
reduced to the determination of control torgues that will damp o and
Qxy to zero or to small steady state values.

3. Control Law Formulation

To investigate particular control laws, the corresponding control
torque functions gy and 8y must first be specified. The associated
governing equations follow from (212) and (215). The stability regions
for the governing equations can then be defined by making use of the
conditions developed by Routh {ref. 11) and Hurwitz (ref. 25). If the
selected control torques allow stable solutions for the Euler anglies or
body rates, time histories and complex error sclutions can be found by
the Laplace transform technique or by numerical integration of the
linearized equations. If no stable solutions”are possible, the control

torques can be rejected immediately.
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To illustrate the applications of thils technique, a number of example
control laws will be analyzed.

a. Pure Rate Control Law

For a pure rate control law, consider

K
€x=fl—x‘ﬂx=7\klx9x
X

(216)
&y = %’y' Oy = Neyyfty
so that the moment equations yield
N
= Ny @y + (Ii,ﬁny = £y
and & (217)
fy - Ney Ry - (Z\%)Qx =Ty
J

The Laplace formulation of the corresponding complex rate error is

[52 - Mgy + kyy)s + 221+ klxklyﬂ Qy(s) = V(s) (218)

vhere the transform of the effective forcing function is given by

V(s) = Vy(s) + ivy(s) = [(s - Neyy ), - <11Xﬁ)ﬂyc]
A
+ [Es - %kly)fk(s) - («%Ez>fy(sii> +1i{|(s - %klx)gyo

+ <?\)IC:,X>%‘;} + [(s - Neqx)fy(s) + (x}ix)fx(s)] (219)
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The time solution of (218) consists of the sum of a general
solution, for which fy(s) and fy(s) are set equal to zero in (219),
and a particular solution of the complete equation (218), for which
f (s) and fy(s) are specified for the applied disturbances. The
functions fy(t) and f&(t) are the explicit, continuous functions of
time defined by (213) and (214), and do not contain the rate or attitude
errors.

The particular solution of (218) is directly dependent on the
disturbance under consideration, but characteristic trends for this
solution can be indicated when the general solution is a damped vibration.
Step functions in (213) and (214) will lead to constant residual rate and
attitude errors; impulse functions and their derivatives will lead %o
damped transient rate and attitude errors which approach zerc as time
increases; and sinusoidal forcing functions will produce residusl sinu-
soidal rate and attitude errors. The amplitude of these residual errors
i1s reduced with an increase in the damping ratio.

The actual development of time histories for the various applied
disturbances will not be attempted here. The primary tasks of the control
system are the minimization of errors during a disturbance and the
elimination of residual errors after removal of the disturbance. Both
these tasks can be accomplished by the selection of stable gains that
yield large damping ratios consistent with realistic control systems, and

do not require the development of time solutions.
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Stable gains are gains for which all roots in the general solu-
tion have negative real parts. The characteristic equation for this

general solution is
% = NIy + Kiy)s + A (L1 + Kyukyy) = 0 (220)
and stability of the complex rate error requires that

“Neyy > Akgy
and (221)

klxkly > -1

One should note that (220) has the form

52 + 2rﬁgNs + ng =0 (222)

The damped natural frequency wy may be expressed as

oy = 1AL+ By " (223)

while the damping ratio rp and time constant tp are

ry = - X1x * Ky sgn A (22k4)
2 ,’l + klxkly
and
ty = == == (225)

roy ) Mkpy + kly)

respectively.
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Selection of the control gains is generally based on a desired

time constant and damping ratio. For the present case, this yields the

relations
-
- 1 + 2 1
k - =1t [(Aty) + (1 - —= (226)
1x )\tD D ( rD2>
and
~
I N P e - L
kyy = Neg 15 [(Mp)© + (1 ng) (227)
where
1< [1 v () (228)
p

for the specified real values of kix and kly‘ The stability condi-
tions (221) are automatically satisfied by (226) and (227) for positive
real values of the damping ratio and time constant. Control gains for
particular damping characteristics can thus be determined directly from
the above equations.

The resulting reglons of stability for the control gain functions
k1x sgn A and kjy sgn A are illustrated in figure 27(a). The gain
functions must be in the area bounded above by the rectangular hyperbolas
klxkly = =1 and the straight line kKix = - kly' Of particular interest
is the fact that either of the two gains can be zero. This means that
damping of the spacecraft's rategs is possible with torques applied about

a single spacecraft axis and derived from a single rate gyro for that
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Figure 27.- Stability characteristics for the controlled spacecraft.
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axis. Hence, a control system providing rate control torques about two
axes has inherent redundancy in case of failure of one of the system
torquers.

An indication of the damping characteristics obtained for the
pure rate control is given in figure 27(b). This figure shows the over=-
damped, critically damped, and damped vibration regions corresponding
to the stable control gains. Critical damping occurs when rp = 1, and

yields the conditions

1]

. klx kly + 2

and (229)

1§

kix kly -2

from (22h). Stable gains that fall outside of the straight lines
defined by these conditions will yield overdamped spacecraft motion;
gains that fall between the straight lines will yield vibrational,
damped spacecraft motion.

From (224) and (225), it is apparent that the time constant is
smallest when the two raté gains have the same sign. To optimize bLoth
the time constant and the damping ratio, one of the two gains can be
selected as zero. Single-axis rate control for the spacecraft should

thus be quite efficient.

The transformed complex position equation is
‘ 2 2
(s + m)[}p - Mk, + kly)s + A (1 + klxkly)]a,(s)

= V(s) + [%2 - x(klx + kly) + Ke(l + klxleEJab (230)




»
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Since this equation contains a purely imaginary root, the solutions for
the complex position error will be neutrally stable. The pure rate
cammand is thus limited in its usefulness to those applications where
only rate damping is needed. An example of such an application would
be a manned space station, where the functions of rate damping and
attitude control are often provided. by different subsystems and where
the rate control law is used to command onboard momentum storage system.

From (218), the rate error may be written as

-]2;(Sl+sg)t

Oy = A E\(klx - kly)nxo - (K >Sly% sinh(sy - s5)t

51—32
L

[:Qx (sq - sgjcosh(sl - sg)} + 1 7\(ka - k)i

+ CXI )%co sinh(s] - sp)t + [:Q*y (sy - sg] cosh(sy - sp)t
Y
' B

I I,
. d‘/‘-l [és - 7‘k1y)f (s) - (—%—}-{I fy(s] + 1[(5 -7\klx)f (s)+ (My>f (s]

(s = s1)(s = s5)

(231)

where

51 = %[(kh + kly) + \/(klx - kly)2 - ]
(232)

So = %Ek_lx + kly) - J(klx - kly)2 - ]
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The response of the spacecraft is analogous to that of a spring-mass
system with forced vibration and damping. The free vibration term
corresponding to the initial conditions approaches zero as time increases,
and the forced vibration term corresponding to the applied torque and
mass motion effects is multiplied by a magnification factor or is damped
to zero. The magnification factor is a function of the control gains

and decreases as the terms k1x and kly take on larger stable values.

The attitude error for the pure rate control becomes

s I, - AL
a = a,oe-lo"b - (Sl - i?\;.(SE TN {Eile&o + (?\y ny X)Qyo-]

* ofeacte - (1"-1"1;—”"‘)%3} il R | CRE

]

+ (z\%zx-)ﬂy;1 +1 (sl - klx)Qyo - (5555>Qx;1> eSlt - [;52 - kly)nxo
_ L Ty

e O I

I I,
+£_lﬂ:(s ~k1y ) fy(s) - (}yl—;"jfy(s):l +i[(s - k1) Ty((s) + (?‘11:[ )fx(s)]
L (s = 51)(5 = 52)(s + iA)

(233)
vhere s, and s, are given by (232).
From inspection of (233), it is apparent that the initial errors Ay

and {yyo contribute both free and damped vibration terms to the
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spacecraft's motion. Since the damped terms will vanish for large time,
only the purely oscillatory terms need be considered. The amplitude of
the motion due to the initial position error a, is not affected by the
pure rate control law, as one would expect from the results of the sta-
bility analysis. The amplitude of the motion resulting from initial
rate errors can, however, be reduced by proper choice of the control
gains for the particular spacecraft under investigation.

In summary, one may thus conclude that the pure rate control law
is adequate for the damping of the spacecraft's angular velocities. If
no initial attitude errors or reorlentation requirements exist for the
spacecraft, it should also be possible to select control gains which
will hold the spacecraft to small oscillations gbout its initial position
in the presence of crew motions and other internal disturbances. The
latter function is particularly important in spacecraft with solar cell
panels or similar equipment, which must be approximately maintained in
a given inertial direction. The effectiveness of the attitude hold mode
for the rate control law should, however, be checked by substitution of
"worst case" forcing functions for the spacecraft into (233).

b. Rate Plus Rate Integral Control lLaw

When the control torque is derived from both rate gyros and

integrating rate gyros, one may take

=)
/ t
gxz%;Kle%c*'Kacf det)= klxﬂx'*'kac( )f 9y dat
and - G
t ) AT t
g = %(Klyny + Kpy f Q dt) = N koyQy + kgy(.-?;’é>/ Qy dt
y

- —J
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with the governing equations

t
o = Negyfy + (%l)[% - 7\1{2;(/ ay dt:]
and > | (235)

H
|a}
]

Il

fy
J

The characteristic equation for the general solution for the rate error

is given by

% - A(xyy + K1y)s0 + A1 + Kngkay)s® + M(koy - kox)s - Nkoykoy = 0
(236)

and the stability conditions are

-Ney > Negy

Figkay = -1

Negy > Nepy $ (237)
and

(kpy + Kyydkoykoy > (kpy - kgx)[(k2y - koy)

+ (kqy + kly)(l + klxklyi]

»

Here, the nondimensional gains k are defined as in (212).

3l
The governing equation for the general solution for the position

error ylelds the relation
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[% + i%}[%h - X(klx + kly)s3 + Kg(l + klxkly)52
+ 7\5(k2y - ko )s = XukackQJa(é) =0 | (238)

Once again, the attitude equation contains a purely imaginary root,
leading to neutral stability of the position error. The trends of the
spacecraft's motion for the rate plus rate integral control law are
thus similar to those for the pure rate control law.

The stability regime for this control law is shown graphically
in figures 27(a) and 27(c). The nondimensional gains ki, K1y, oy,
and k2y must now be selected to satisfy the conditions (237). The
first two of these conditions are identical to those for the pure rate
control law and are given by figure 27(a). The next two conditions lead
to stable motiocn in the second quadrant of figure 27(c), subject to the
last restriction which represents a compatibility relation between the
rate and rate integral gains. This campatibility condition yields a

hyperbola with the equation
2 2 2
Koy = [2 + (kpy + kly)]kgxkz.y + ko
+ (kpy - ka{)[(kbc + k) (1 + klxklyﬂ =0 (239)

as sketched in figure 27(c). The stable region in this figure is then
the area between the upper segment of the hyperbola and the ko, sgn A

and k2y sgn A axes.
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If the nondimensional rate gains are small in comparison with
unity, as would be the case for most practical control systems, then

(239) can be approximated by

(k1x + k1y) = (kox - koy) (2%0)

and the resultant stability characteristics are given in figure 27(4d).
The spacecraft's motion is stable if the rate integral gains are
selected from a triangular area of the fourth quadrant for a set of
stable rate gains. ‘

By examining (235) and (236), one notes that the modified char-
acteristic equation for the rate error reduces to a cubic equation when
either of the two rate 1ntegral gains vanishes. This special case would
occur during single-axis control of the spacecraft and is thus of
particular interest.

Stability restrictions are given by the standard rate gain

restrictions and the relation

W

0> ko, sgn A> (ki + kly)(l.+ klxkly)sgn A

or 5 (2k1)

0 > -kpy sgn A > (kyy + kiy)(1 + kyykiy)sen A )
The resultant gains will fall on the boundary of the stable region in
figures 27(c) and 27(d). Accordingly, stable control of the spacecraft

is possible with single-axis rate plus rate integral commands.
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Returning to the governing equations (255), one observes that
numerical integration will be necessary to determine the rate time
histories for particular values of the control gains. Some general
conclusions can, however, be drawn for the case where the nondimensional
rate gains are chosen to be considerably larger than the nondimensional
rate integral gains. Inspection of (236) shows that the last two terms
in this equation are now small during an initial transient period after
a disturbance, when the rates are large and their integrals are small.
The rate equation is thus approximately equal to (217) and thé rate
gains can be selected from (226) and (227) to yield the desired damping
characteristics during the transient period. As steady state conditions
are approached, the rate integral terms will predominate and the result-
ant control torques will tend to eliminate any residual rate errors.

The net effect of this law will be a reduction in the gain magnitudes
since the high rate error gains will no longer be needed to reduce
standoff errors in the steady state condition. Damping and attitude
hold characteristics for the rate plus rate integral law should thus be
quite efficient.

¢. Rate Plus Attitude Control Law

Next, consider control torques developed from both rate and

attitude errors and given by

]
)

8x fi(le”x + Kzx0) = Ml + okzy®)

(2k2)

My + oksy®)

J

%;(Kly“y + K5y0)
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The resultant equations of motion are

N
O = Ne1x&y + (%X)Qy - 0Nk3x6 = fy
end ) (243)
- AIx
Qy - Kklyﬂy - ( I >Qx - ONK3yP = fy )
y

leading to the general characteristic equation for the complex rate

error

2 2
k I k I
Sl+ - 7\(le + kly)55 + {:0-2 + ')\2(1 + klxkly)] 52 + g <3y )\x X _ 3)( )\y y> _

Iy, I,

N(kyy + Kiy)|s + UQKEE{lxkly + kyy - klb] =0 (2hk)
The associated Hurwitz stability criteria yield the conditions

“Nkyy, > Nky 3\

e+ ]

2 2
<%5y KXIX kBX KyI

y) > oA(k1x + kiy)

I, Tx > (245)
and

2 2
K3, ATy Kz AyT kix + K
(53’ XX _ DXy y> > 5(_____1;: ly) Eg - 251+ klxklyﬁ

Iy Ix o 2

2
¥ Eg - NP1+ kbcklyﬂ + b1+ Xy - Ky)
J

for stability of the rate errors.
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After substitution of (215) into (242), the characteristic equa-

tion assoclated with the general solution for the attitude error becomes

s - Akpy + k1y)sd + [}2 + N2(1 + klxklyi]s2

k k
- OA|(I4 + Iy - IZ)(EiI - Eﬁ}.) + (kix + kiy)|s
x y

+ ogxg[% + (kix = kay)(kpy + k5yg] =0
Corresponding stability conditions are

Akyy > Negy
. 2

Iy T

)7\
(k4 - k5x)(kly + k3y) > -1

and

2 2 X
Noliyy + kyy) (kgplesy = Kppkgy = kyks) > (I + Ty - IZ)<fi1

k k
- 25) 02(1x+1y-xz) b3y Kox +(kyyt kly)[c2- 7\2(1+k1xklyﬂ
I, I, Iy

for the attitude errors.

(2L6)

) (247)

y,
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Both (#45) and (247) must hold for stable error histories. 1In
most cases the nondimensional rate and attitude gains are small in come-

parison with unity, and the stability conditions given by these equations

can be approximately represented by

KqyKyy > -1 $

k I k I
> k) )R
kix + kiy/\Iz kix + kly I, J

The rate gain restrictions are now identical to those for the pure rate

(2L8)

and

law and are thus shown in figure 27(a). The attitude gain restrictions,

illustrated in figure 27(e), yield a stzble region falling between the

=) GG
kh + kly Iz klx + kly IZ
and 5 (249)

R ) 2)-
le + kly IZ klx + kly IZ J

It is werthwhile to note that either of the two attitude gains may be

lines

3

zero, and attitude and rate damping of the spacecraft is thus possible
with torques applied about a single spacecraft axis. The error signals

reeded in the calculation of these required torques can be taken from
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single rate gyro and a single sun sensor mounted on that axis, and
the mechunization of such a control system appears to be very simple.

As seen from (24k4) and (246), the determination of the damped
rate and attitude errors agaln requires the numerical integration of (243).
One observes, however, that both damping and reorientation control can be
provided by the rate plus attitude control law, and that this law can
correspondingly be used to maneuver the spacecraft. In comparison, the
rate and the rate plus rate integral control laws were restricted to
holding an already established inertial position.

In addition, it may be noted that pure attitude control, for
which kjyx = kpy = 0, will result in several zero coefficients in (2ik)
and (246). The associated spacecraft motion is, at best, neutrally
damped and may diverge for certain forcing functions. Pure attitude
control then provides no damping of the spacecraft rate and attitude
errors. This conclusion is, of course, in agreement with previous
results.

d. General Consideratjons

Other control laws may be investigated in an identical manner by
selecting the control torques, developing the éomplex governing equations,
and defining the resulting stability regions for the spacecraft's motion.
If the control system gains are chosen to satisfy these criteria, the
motion of the spacecraft will be damped. The determination of time
histories of the controlled spacecraft motion becames a rather tedious
task, however, and is perhaps easiest if the governing equations (212)

and (215) are programed on a digital or analog computer. Having assured
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that the selected control gains lead to stable motion of the space-
craft, cases with particular disturbance functions can then be run on
the computer to determine the spacecraft time histories.

Extension of the method to include nonlinear control commands
is possible, but nonlinear techniques (refs. 21-27) mﬁst then be used
to define the stability of the governing equations. A preliminary
selection of the type of on-off control commands, as represented by
step torques, may be made by noting that the spacecraft response for
an amplitude~limited control system with high gains approaches that
for an on=off control system. Sensor inputs and the signs of the
control torques may thus be chosen from the proportional analysis.
Time histories for the on-off commands can then be obtained by substitu-
tion of the corresponding step functions in (42). The solutions for
th: body rates and Euler angles now are found by a piecemeal process,
and the forecing and solutions functions change whenever the deadbands
for the on-off system are crossed,

Linear control optimization (ref. 28), as represented by a
minimum mean square error criterion, may also be considered. Maximum
torque or error limitations can be Included as restraints in such an

analysis.
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. Control System Selection

llaving determined a control law which leads to acceptable damped
motion of the spacecraft, one must next select physical systems that can
develop the actuator-torque histories required by the control law. The
choice of such control systems is generally made on a minimum-launch-
weight basis; and relations between the control system weight and its
impulse or momentum storage capacity are needed to evaluate the compara-
tive merits of various control hardware. Preferably, these relations
should not necessitate the detailed design and optimization of competitive
systems for a particular spacecraft.

An empirical representation of the total control-system launch-weight
in terms of the angular momentum or impulse provided by the system will
be used in this anclysis. Such a representation gives reasonable
approximate values for the control system launch weight, and allows the
rapid comparison of different control actuation schemes. Furthermore,
the empirical results are completely independent of the spacecraft
inertia characteristics or dynamics.

There remain then two tasks, namely sizing and implementation of
the control system. To sizé fﬁe syéfém, dné first dééerﬁines fhé ;éace-
craft's angular momentum envelope by integration of the torques cor-
responding to simultaneous application of all "worst-case" disturbances.
The launch weight for the control system can then be developed fram the
empirical data, and a preferred system concept can be selected. The

implementation of this concept requires the solution of the control
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i system equations to define the actual torques the system must generate
- in order to provide the desired control law and eliminate cross coupling
moments caused by any angular momentum stored in the control system.
Control system components may be divided into the general classes of
momentum storage units and reaction control units. Maomentum storage units
comprise reaction wheels, single-gimbaled control moment gyroscopes, and
double-gimbaled control moment gyroscopes. Reaction control units consist
of reaction jets with variable mass flow or pulse moduletion.
The angular momentum envelopes for these two classes of control

components are then given by

: Hy
t t
- = [Ix f ¢ Tx diz] + iE[y / e £y dt] (250)
“ 0 s o)

Tor the momentum storage units, and

Hyy + iy

Hpy + iHRy

t t
l:Ix /d |in‘1’°]+1[%:¥ [ : 'fy!dt‘J (251)

for the reaction control units. The integration is carried on over 14,

i

"R

the time interval of application of the "worst-case" disturbances.

a. Reaction Wheels

For sizing purposes the reaction wheel will be taken as a flywheel

which ic accelerated by means of a torque motor to produce reaction
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torques on the spacecraft. A sketch of a control system using two such

wheels is shown in figure 28.

Pigure 28.- Spacecraft control with reaction wheels.

From manufacturer's data¥*, the basic weight of a reaction wheel

(ref. 29) with a minimum alternating-current motor configuration is

Wy = 6.3 + 170 “ﬂs (252)

where Wy 1s the total reaction wheel and motor weight in pounds, Hy
is the angular momentum capacity in ft 1b sec, and Wg is the synchronous
wheel speed in rad/sec.

Similarly, the reaction wheel power may be derived from empirical

data (ref. 30) as

Py = 2.77 GeWg (253)

4

*Reproduced and used by courtesy of the Bendix Corporation.
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where GS is the stall torque in ft 1b. If one introduces a power
weight conversion factor of a Ib/watt, then the equivalent power system

weight for the reaction wheel is

Wp = 2.T7 aGuog (254)
and the total weight chargeable to one reaction wheel becomes

Wyp = Wy + Wp = 6.3 + 170 %S”- + 2.77 aGgws (255)

To optimize the total weight for a given angular momentum and stall
torque, one differentlates the total weight with respect to wheel speed
and equates the result to zero. Substitution of the corresponding

wheel speed into (255) gives

Wyp = 6.3 + 21.7 ,/acsﬂw (256)

The caontrol torques may be assumed to be sinusoidal with ampli-

tude Gg and freguency A, so that one can take

g = ~Gge (257)

as a good approximation to the control moments. Since these control
moments are equal to the total rate of change of the angular momentum

components for the reaction wheels, it follows that

Gy cos At = éWl - oHyo
(258)
Gg sin At = Hyp + oy
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or introducing
Hyy = Byy + ilfyp (259)
one obtains
Ggel™ - Hyy + 10He, (260)
This expression can be integrated to give
Hyy = (UGE x)em; : (261)
for no initial wheel momentum. Maximization of (261) further yields the
value
- =

for each of the two reaction wheels.

Substitution of (262) into (256) leads to the expression

Wyp = 6.3 + [21.7 Va(o + ?\)]Hw (263)

which is plotted in figure 29.

Total reaction wheel weight, Ib

This figure will also hold
r—for nonspinning spacecraft it
—theterm o +A is replaced by
~—the disturbance frequency in
rreses, o BEEE
100 1000 0000

Reaction wheel mamentum, ft-Ib-sec

T

E¥ $ 8531 Mo 23 BT I

Figure 29.- Variation of total reaction wheel weight with
required angular momentum.
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The weight of the reaction wheel control system is now given by

Wy = Wyp(H) + Wyp(Hyy) (26k)

where Wyp(Hyy) and WWT(HMy) are taken from the figure, using the
values of Hyy and Hyy previously determined from (250).

One should note that the spin rate o must be very small if
reaction wheels are to be efficient. As an example, & power conversion
factor of 1 1b/watt and a spin rate of 0.25 rad/sec for a flat disk con-
figuration would yield WT = 3,074 1b for an angular momentum requirement
of 100 ft 1b sec along each axis. Since such exorbitant weight penalties
are impractical, reaction wheels generally are inacceptable for the
damping control of spinning spacecraft.

If such wheels are used for spacecraft with very low spin rates,

the governing torgque relations become

g==G = -I.'Ixy - iGHXy (265)

and

T, = Oy - Oyl (266)

vhere G 1s the complex torque applied to the reaction wheels, and T,
is the cross coupling torque applied to the spacecraft by the control
system. Since the body rates are small, this sinusoidal cross coupling
torque is relatively small and its effect on the spin rate o will be

neglected.
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The desired control torques are then cbtained by directly applying

the reaction wheel torques

G =Gy + iGyp = -8 (267)

by means of the wheel actuators.

b. Control Moment Gyroscopes

A control moment gyrosccpe consists of a flywheel which spins at
a constant speed and is mounted on a single or double gimbal arrangement.
Control torques are now developed by precessing the flywheel. Torque
actuators mcunted on the gimbals provide the necessary precession torques.
Sketches of control systems using single- and double-gimbaled gyros are

given in figures 30(a) and 30(b), respectively.

(a) Single-gimbaled gyros. (b) Double-gimbaled gyro.

Figure 30.~ Spacecraft control with control moment gyros.
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Since the weights of single- and double-gimbaled gyros do not
differ appreciably, launch weights for both these units will be assumed
to be identical. The basic weight of a control moment gyroscope can

again be developed from manufacturer's data (ref. 31) and becomes

Power requirements now are derived primarily from the windage and
friction losses for the flywheel, and can be approximated by empirical
data derived from computer analyses (ref. 32) as

(269)
The pover required by the gimbal actuators is small and will be neglected.
The total weight of the gyro is then

Wagp = Wg + Wp = 1.37 HGO'68 + 1.47 aHGO'562

(270)
Launch weights of the gyro are plotted against angular momentum in
figure 51, and a comparison with figure 29 shows that the total weight
for a system using gyros is much less than that for a system using

reaction vheels.
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Figure 31.- Variation of total gyro weight with required
angular momentum.

In comparing single- and double~gimbaled control moment gyros,
one observes that the weight for the single-gimbaled gyro system is

derived from

Wy = Wop(Hyy) + Wer(Hyy) (e71)

while the welght for the double-gimbaled gyro system becomes

2 >
VB~ T By

Wm =W
T GT cos ag

(272)

i where g is the limiting gimbal angle and HMx and HMy are again

found from (250). Since a, is generally 600, the double-gimbaled gyro

- g




- 146 -

system 1s somewhat lighter than a control system using two single-
gimbaled gyros.

To derive the gimbal actuator commands for the implementation of
the desired control laws, one notes that these torques are again derived
from the total rate of change of the angular momentum vector for the

gyro system. Thus, the complex control torque is

g = ..ny = "ny - iE’}Ix.y. - HZQX)] (275)
and the crocss coupling moment becomes
Ty = -H, + Oy - OyHy (274)

The minor changes in the spin rate o due to T, will be neglected in
this linear formulation, and the necessary control commands are now
found by expressing ny and H, in terms of the gimbal angles.

For the single-gimbaled gyros this gives

Hyy = Hy + ily = Hg) sin 6g - iHgo sin 9,
and (275)

Hz = Hgy cos 85 + Hgpo cos Pg
The governing torque equations now reduce to
g = -ny = - [HGl(eg + Qy)cos Bg + HG2(0' sin tpg + Q‘y cos Cpgﬂ

+ i[HGQ(Cbg - )cos Pg + Hyp (o sin Bg - Oy cos eg{] (276)

and

T, = H(}l(ég + Qp)sin 0 + Hgp(Pg - Ox)sin @ (277)
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wvhere the small gimbal accelerations haye been neglected. Gimbal torques

may be commanded directly from

Gy = Ox + iGy = -g : (278)

in an open-loop system.
For the double-gimbaled gyro the angular momentum components

along the spacecraft's axes become

Hyy = HG(sin 6g = 1 sin @z cos eg) (279)

and

Hy = Hg cos @g cos Bg
The torgue relations thus are
g = ~Oxy = ~(Gy + 1Gy cos @g)
= -Hg {Iég + ¢ sin Oy + Qy cos @éJcos bg - i[;ég + Q )cos 6y cos P

- (c+ ég sin @g)sin GéI} (280)

and

T, = -Gy sin 9, = Hg {Eég + fg)sin 9, cos 6,
+ (Qy + ég cos Qg)sin 6%} (281)

where the gimbal acceleration terms are again neglected.
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Necessary gimbal torques are developed from

Gy = ~Ixex

(282)

(]
1l

y = ~ly8y sec 9

and require the measurement of the gimbal angle @g'

c. Reaction Jets

The reaction jet system comprises the propellant, oxidizer,
engines, and tankage weight necessary for the spacecraft's control. To
arrive at weight estimates for such a system it was assumed that the
usable specific impulse considering engine efficiency, expulsion
efficiency, and ullage would be 290 lbfsec/lbm and that the propellants
would be storable hypergolics housed in tanks with positive feed expul-
sion diaphragms. Manufacturer's data* can then be extrapolated (ref. 33)

to yield the idealized total system weight
Wip = 0.0101 T0*9*2 (283)

which is presented in figure 32. Here Ip 1is the total impulse in 1b sec.
This impulse may be written in terms of the total momentum envelope for
the spacecraft, giving

Iy Zy i,

Ip = (EBE + Hpy + EB&) (284)
T

where ly, 1y, and 1z are the moment arms about the X, Y, and Z body

axes.

*Reproduced and used by courtesy of the Minneapolis-Honeywell
Regulator Company.
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Figure 32.-~ Variation of total reaction Jet system weight

with required total impulse.

An assessment of the weight of the reaction jet system thus
requires the development of total momentum envelopes for the spacecraft
mission. The momentum for particular disturbances must be determined
from (251) and the resulting momentum components along the spacecraft's
axes must then be multiplied by the probable freguency of occurrence of
each disturbance. By repeating this process for all disturbances and
summing the individual momenta along each axis, a total momentum envelope

per sampling period is obtained. The weight crossover time between
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momentum storage and reaction control system can now be established from
figure 52, since the total momentum envelope per unit time has been
developed. If the mission time exceeds this crossover time, momentum
storage systems should be selected for damping of the spacecraft's
motion.

If reaction-jet systems are chosen, they can be combined with a
mass~balancing system which compensates for any constant products of
inertia resulting from crew motion or cargo transfer and eliminates limit
cycling of the Jets about the new principal moments of inertia. Such a
system could, for example, pump the propellant to different positions
within the spacecraft to obtain its control torques. Since the design
of this mass-balancing system is very much dependent on the spacecraft
geometry, it will not be considered here.

In most cases, however, the control system will consist of both
reaction jets and momentum storage systems. The jets then provide for
attitude control and orbit keeping and the momentum storage system is
used to damp any oscillatory motion of the spacecraft. Attitude control
commands are now used to actuate the reaction Jjets while rate and rate
integral commands provide control laws for the momentum storage system.
The development of such combined systems is again dependent on specific

spacecraft and disturbances and will not be attempted in this analysis.

F. Comparison of Exact and Approximate Solution
Two possible manned spacecraft were considered for a comparison of

the results of the numerical integration of the exact equations of motion



and the results of the present analytical solution. These spacecraft
were a cylindrical manned orbital research laboratory and a large
hexagonal space station.

1. Manned Orbital Research ILaboratory - MORL

The MORL is proposed as an earth-orbital laboratory in which scien-
tific and engineering experiments could be conducted over extended time
periods. The basic laboratory is designed to support a crew of six
astronauts in a 200-nautical-mile orbit for up to 5 years. During
spinning operation, the laboratory module and the last stage of its
Saturn booster would remain attached by a system of cables and would
rotate about a common mass center. The resultant centrifugal force
would produce an effective gravity field in the manned module. A sketch

of the corresponding MORL configuration is shown in figure 33.

Figure 33.- Artist's sketch of possible manned orbital
research laboratory.
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Assumed inertia and mass characteristics (ref. 34) for this configuration
are given in table 6. The inertia distribution is near-cylindrical, and
the manned module and booster counterweight rotate about the Z axis at
C.h rad/sec. A gravitational acceleration, equal to one-fourth that at
the earth's surface, acts on the manned module due to this rotational
rate.

The effects of various disturbances on MORL are summarized in table 7.
The disturbances include residual rate and attitude errors after spinup,
moments applied by an attitude control system valve failure in the open
position, and several "worst-case" crew motions. These motions comprise
step translation to an extreme position within the laboratory and linear
oscillations which could result from trampoline exercise, ladder climbing,
or floor pacing. A linear velocity of 4 ft/sec is selected for all
oscillatory motions, and the entire crew of six is taken as a single
equivalent mass with a mass factor Q of 36 slugs.

Equations defining these disturbances are listed in the second
column of the table. The resulting error limits have been found by hand
calculations of the analytical upper bounds and by extrapolation of the
error time histories obtained from numerical integration of the exact
equations of motion on an IRM TO94 computer;

Both rate and attitude error limits are given in the table. The
rate error limits range from about 0.004 rad/sec for the step inertia
product to about 0.025 rad/sec for the step torques, and the attitude

error limits vary from approximately 0.0l rad/sec for the step inertia
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product to approximately 0.18 rad/sec for the residual errors after
spinup. Significantly, the errors caused by the periodic mass motions
are several times greater than those produced by instantaneous motion
to a final position. Predictions of maximum spacecraft errors due to
crew motion must thus consider any periodic crew motions that may occur.
Onboard experiments, which require high~accuracy control of the space-
craft, may be adversely affected by the oscillatory crew motions and may
require restriction of these motions.

The approximate error limits developed from the analytical solutions
show reasonable agreement with the maximum errors determined from the
exact solutions. The deviations of the approximate error limits from
the exact error limits are generally less than 20 percent of the exact
error limits. These upper bounds of the spacecraft errors will thus
give a conservative estimate of the effects of various disturbances
and should be sufficient for initial engineering design applications.

About 3 hours of hand calculations were required for the determina-
tion of the approximate error limits, as compared with about 6 hours of
data processing and camputing for the calculation of the exact error
limits. When one further considers the complexities associated with the
programing and numerical integration of the exact equations of motion and
the nonavailability of an IBM 709% computer to many scientists, the
advantages of the analytical results are apparent.

Two of the solutions described in table 7 have been selected for a
comparison of the actual error histories and the error histories given

by the analytical solution. The disturbances are the step product of
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inertia and the vertical mass oscillation. Both the uncontrolled and
the controlled spacecraft motions were considered. Solutions for the
uncontrolled case were obtained from numerical integration of the exact
equations of motion and from evaluation of the error relations developed
in this analysis. Solutions for the controlled case were obtained from
numerical integration of both the linearized and the exact equations of
motion. All calculations were carried out on an IBM 7094 computer.
Single-axis control commands, which apply torques about the X or
minimum-inertia axis of MORL, will be most efficient. One may accord-
ingly set the nondimensional rate damping gain kiy in (227) equal to

zero. This yields

ki = - —— = ~2rp, (285)

as the nondimensional rate damping gain for the X axis. The corresponding

rate integral gain, when used, is arbitrarily selected as

kaxt—‘—h——

to fall in the stable region of figure 27(d).
For MORL, the time constant +tp will be equated to one spin cycle

or 20 sec. Values of the control constants are then

Kix = =13,300
and
K, = =2,040
The rate damping ratio becomes
rp = 0.1
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and state-of-the~art gyros (ref. 35) in the 500 to 1000 ft-lb-sec class

(see fig. 31) and jet hardware can provide the necessary control torques.
The MORL response to the step product of inertia is illustrated in

figures 3% and 35. The uncontrolled rate and attitude errors are given

in figure 34.
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Figure 3L.- Uncontrolled laboratory error histories for
step inertia products.
It is apparent that the exact and approximate solutions are virtually
identical. Both the rate and the attitude errors are biased sinusoids.
As expected from the trace analysis, the largest rate error occurs about

the Y axis and the largest attitude error corresponds to rotation about
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the X axis (see figs. 9 and 10). To the crew, the rate error appears
as a minute rolling motion of the laboratory floor with a maximum
amplitude of 0.6°.

The controlled response of the laboratory to this disturbance is

shown in figure 35.
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Figure 35.- Laboratory error histories for step inertia products
and pure rate control.
This figure, which corresponds to pure rate control about the minimum
inertia axis, again gives the same results for both the exact and the
approximate solution. The laboratory oscillation is reduced to steady

coning in about three spin cycles. The constant residual rate errors
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produce constant control torques which counteract the mass unbalance
torques produced by the products of inertia. The effective disturbance
torque is thus less than it was for the uncontrolled case, and the
residual rate errors are correspondingly somewhat smaller than the con-
stant components of the uncontrolled rate errors. The oscillatory terms
in the uncontrolled rate errors are due to the acceleration terms asso~
ciated with the introduction of the inertia products and tend to zero

in the controlled error histories.

The attitude errors for the damped rate errors became
- i{égg:
ar = @p + 16, = age lot | p (286)

from (215). For the step products of inertia, the attitude errors result
from changes in the body rates which do not affect the total spacecraft
momentum. The contribution g of the transient oscillatory terms in
the body rates to the attitude errors will tend to zero, and residual

attitude errors are given by

and (287)

r

where (L. and er denote the residual body rates. Both the rate and
attitude errors approach constant values for the theoretical solution.
As predicted by the analysis of the controlled spacecraft character-
istics, single-axis rate control is acceptable for normal operation and
experiments which do not require high-accuracy stabilization of the

spacecraft.
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The MORL response to a vertical periodic motion of the entire crew

- is depicted in figures 36 and 37. Figure 36 illustrates the uncontrolled

results.
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Figure 36.- Uncontrolled laboratory error histories for
vertical mass oscillation.
The exact and approximate solutions check very closely. The rate and
attitude errors now comprise a low-frequency, large-amplitude sinusoidal
oscillation due to precession within the outer (A) ellipses and high-
frequency, small-amplitude oscillations due to precession within the
- inner (p) ellipses (see figs. 12 and 13). The meximum errors are two

to three times as high as the corresponding errors for the step inertia
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product. The laboratory floor also undergoes irregular rolling motions
with maximum amplitudes of about 2°. Since the distance (ref. 34) from
the center of rotation to the laboratory floor is approximately 50 feet,
this roll can produce a 2-foot total translation of the station floor
and could present some difficulties to a moving astronauf within the
laboratory.

The controlled laboratory motion is presented in figure 37.
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Figure 37.-~ Laboratory error histories for vertical mass oscillation
and rate plus rate integral control.

Control torques are applied about a single axis, but a combined rate and

rate integral control law is used. The laboratory motion is quite similar
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to the uncontrolled motion, but exhibits damping of the free vibrations,
as is apparent from the gradual decrease in the corresponding error terms.
Since the periodic forcing function terms predominate, this type of
response is to be expected. Agreement between the approximate and exact
solutions is very good, and the small differences in the error histories
can only be detected for the angle Q.

The uncontrolled and controlled error histories developed from the
approximate solution for the nonsymmetric MORL are practically coincident
with the exact error histories for all the disturbances that have been
examined. The analytical solution is thus a useful tool for the study
of the nonsymmetric laboratory motion.

2. Large Manned Space Station

A second possible type of manned rotating spacecraft is the large
spinning space station, such as the 150-foot station which will be
considered here. This station (ref. 1), shown in figure 38, has six
cylindrical outer modules arranged in the shape of a hexagon. The outer
modules are connected to a central hub and docking port by three spokes.
Rotation about the maximum inertia axis provides artificial gravity for
the living modules. The crew of this space station would vary from
6 to 21 astronauts.

Assumed characteristics for the 150~-foot space station are listed
in table 8. The inertia distribution approaches that of a flat disk
and the spin rate is 3 rpm. The crew is taken as six astronauts with

an effective mass factor Q of about 36 slugs.
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Figure 38.- Artist's sketch of possible 150-foot manned
space station.

Disturbance effects on this station are summarized in table 9. The
disturbances are similar to the MORL disturbances, and periodic crew
motions are simulated by motion of a single equivalent mass with a
linear velocity of k4 ft/sec. The rate error limits range from approxi-
mately 0.006 rad/sec for the step inertia products to approximately
0.015 rad/sec for the circumferential mass motion. The attitude error
limits vary from about 0.01l7 rad/sec for the step inertia products to

about 0.18 rad/sec for the residual errors. The errors due to periodic

motions are considerably greater than those introduced by the step
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Circumferential crew motions and the residual errors were chosen for
a further cqmparison of the approximate and exact solutions. Both
uncontrolled and controlled solutions were developed.

Control torques were now applied about both station axes and the
corresponding control gains were assumed to be equal. Referring to (226)

and (227), one notes that this yields

1 1
= = o — e ——— 88
kg kly Ao T - (288)
I‘D2 :

as the nondimensional damping gains. The corresponding rate integral

and attitude gains, when used, are selected as

x 'k2y N
and
sy = ~Kzy = Ky

from the stable regions of figure 27(d) and 27(e). The physical control

gains become
Kix = Kox = -222,817

-72,000

K2X = -sz

and

il

Kzy = =Kz, = =70,000

from (210). A time constant of about three spin cycles or 5k sec was

selected to give the damping ratio
rD = 0-02
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Higher values of damping would require exorbitant control moment gyro
and reaction jet control systems. Even the selected value will require
gyros in the 5,000 to 10,000 ft-lb-sec class and will exceed the present
state-of-the-art in gyro hardware (see fig. 31). Rapid jet damping,
although feasible, will result in large fuel consumption.

The advantages of single-~axis control for nonsymmetric vehicles
become obvious when one notes that the MORL, with about one-half the
spin momentum of the 150-foot station, requires a control system that is
an order of magnitude smaller. In addition, the MORL is able to achieve
lower time constants and considerably better damping ratios. These
results lead to the conclusion that nonsymmetric spacecraft, spinning
about a maximum Inertia axis, are preferable from the control standpoint
and that single-axis stgbilization about the minimum inertia axis can
result in major control system weight savings for these spacecraft.

The 150-foot station motion for the circumferential mass transfer
is given in figure 39. The approximate and exact solutions are in good
agreement, and the time histories exhibit slow oscillations. These
oscillations (see figs. 21 and 22) consist of a large-amplitude sinusoid
with the mass motion frequency p and small-amplitude sinusoids with,
approximately, the precession frequency A. The angular deviation of
the gravity vector has an amplitude of about 3° and appears as a cor-
responding slow rolling motion to the crew. For the 150-foot space
station this rolling motion produces a 4-foot oscillation of the station

floor.
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Figure 39.- Uncontrolled, station error histories for
circumferential mass motion.

The controlled station response is illustrated in figure 40. Control
is derived from rate plus rate integral commands, and the station rates
are damped to a purely sinusoidal trace in approximately nine spin cycles.
The constant rate term in the damped trace will eventually disappear
under the action of the rate integral commands. Residual rate errors

may then be expressed as

o = -0 (289)
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where (. denotes the half-amplitude of the residual rate. From (160),

this residual rate amplitude term is

~ Ipz(o + P)e
G p)

so that

2
o v |Txz(e * 2)7| apt
I(A - p)

The corresponding residual rate error beccmes

Ipp(0 *+ )| ipt

ap 34
I(A - p)
and
fhz ~ Irz(a + P)
P, = = - sin pt
o+p I(A - p)
~ .
~ +
0, = - e ) = Irs(0 + p) cos pt
g+p I(A - p)
- -

The residual terms correspond to the coefficients of eipt in the uncon-
trolled solution functions. The control system thus has to have little
effect on the magnitude of the errors directly due to the constant
circumferential mass motion as would be expected for the selected low
value of the damping ratio. The approximate solution campares favorably

with the exact solution for this example.
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Figure 40.- Station erro? histories for circumferential
mass motion and rate plus rate integral control.

Figure 41 presents the station response for residual rate and atti-
tude errors. As anticipated from figure 15, the rate errors are simple
sine and cosine curves. The attitude errors, following (133), are
somewhat more complex sinusoids. The exact and approximate solutions

checked to within three significant figures.
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Figure 41.~ Uncontrolled station error histories for
residual errors.

The controlled station motion with the residual errors is shown in
figure 42. Rate plus attitude control commands are now employed, and
the spacecraft completes the required 10° reorientation about two axes
in approximately 16 spin cycles. The analytical and exact solutions

again were identical.
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Figure 42.-~ Station error histories for residual errors
and rate plus attitude control.

In summarizing the comparison, one may conclude that the analytical
solution was in excellent agreement with the exact solution for all cases
considered. Since the spacecraft used in the comparison are typical
examples of future rotating manned spacecraft, the analytical solution
should be valid for the determination of the dynamics and control of most
such spacecraft. Analytical results for unmanned spacecraft, which may
have larger torque disturbances and residual errors but have few or no

inertia changes, should also be acceptable. The time history data
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obtained for the step torques and residual errors were accurate to three
places and an increase in these disturbances should not appreciably
degrade the results in the linear range. The analytical solution thus
offers a simpler, more economical, and more direct means of assessing
the effects of various disturbances and spacecraft characteristics on
the spacecraft motion than the computer runs. The insight into the
mechanics of motion, that is gained from the error formulation developed
in this analysis, shauld be of major value to future work on the dynamics

of arbitrary rotating spacecraft.
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IX. ANALYSIS OF SPINUP AND DESPIN MODE

A. Governing Equations
For the present application of the governing equations for the
spinup and despin mode, the spacecraft disturbances are assumed to be
restricted so that no internal mass movements occur and no moments are

exerted about the spacecraft X and Y axes. This yields

@, = %;[%zonzo + k/P M, d{} (290)

Ve Izoﬂzod[ %f ; J[ f%[;f M, G%Jdt (291)

from (8) and (12).

Spinup and despin moments about the Z axis will be assumed to be
provided by constant-thrust, pulse-modulated jets (refs. 1, 34, 36).
Since the control of the spacecraft during this mode is quite straight-
forward, the main problem is the selection of a spinup and despin
technique which minimizes the associated fuel consumption for rigid

and extensible spacecraft.

B. Rigid Spacecraft
For the rigid spacecraft configurations, such as the large hexagonal
space station, the jet moment arms remain constant. Spinup and despin
fuel is thus given by

Mpte _ Izflaf
lzrIsp  lzfIgp

Wsy = (292)
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vwhere the subscript f denotes conditions after completion of the spinup
maneuver. The simplest spinup technique would apply continuous thrust or

constant-width thrust pulses until the desired spin rate Q,¢ is reached.

C. Extensible Spacecraft

1. Mathematical Model

For extensible spacecraft configurations, such as the MORL, the fuel
calculation becomes somewhat more difficult. As an example, consider

the sketch below.

; , _’! I [ t - L "—
f Cables or struts _ *
P

e

m* G mm’lm % lc G mc Pc
m 1 I m_1
: ~ o ~ T T
mm mc mm mc
Manned module Counterweight module

Figure 43.- Mathematical model for spinup fuel calculations.

Here the spacecraft consists of a manned module with mass my and a
counterweight module with mass 'mc. The two modules are connected by
a flexible cable or strut arrangement, which is extended to produce a
large rotational radius. The distance between the module mass centers
is designated 1; the offset distance between the thrust P, and the
manned module mass center is 1Ip; and the offset distance between the

thrust Pe and the counterweight module mass center is l.. These
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offset distances yield a larger moment arm and may be required to main-
tain the spinup thrust line normal to the line connecting the mass
centers. To minimize oscillations of the manned module about its Z axis,
some type of rate damping should also be provided. Rate damping moments
can be supplied by a small reaction wheel or passive dampers. The
individual module oscillations about their respective mass centers will,
however, be neglected for the spinup fuel calculations.

Spinup thrusts may be produced by jets on the manned module, by Jjets
on the counterweight module, or by Jets on both modules. The first method
is preferable when the counterweight module mass exceeds the manned module
mass, and the second method is preferable when the manned module mass
exceeds the counterweight module mass. The third method may be used if
Jets are mounted on both the manned and counterweight module; a pure

couple about the spacecraft mass center can now be produced by selecting

e (e

and > (293)

Ty
fe = (n—lé)lm /

Spinup thrusts would be simultaneously applied to both modules for this

method.
All three of the thrusting methods lead to effective moment and

moment arm relations of the form




N

and

where
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o
i

z DlZ + D2

M, =D3l,

- Ppme + Pomy
(Pp + Po)(my + me)

Dy

Pplp + Pele &
D, = 2S¢
Pp + Pe

Dy =Py + Py J

for the spacecraft model.

The spin inertia I, can be written as

where

and Ip,

module mass centers.

2
I, = I, = Dyl, + Dsl,

N

- (222

J

denote the respective module inertias referred to the

(29%)

(295)

(297)
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The above equations now allow the simple formulation of the total
fuel consumptions for different spinup techniques.

2. Spinup and Despin Technigues

Spinup will be assumed to occur in the following mammer. While
rigidly coupled, the two modules are brought to an angular rate Slyg .
The modules are then separated by extending the flexible module connector
under action of the centrifugal force. During this extension process
the spacecraft momentum, spin~-rate, or spinup thrust may be held constant.
After the full cable extension is reached, the two modules are spun up
to the final spacecraft spin speed. Despin will require this sequence
in reverse order.

The fuel required for spinup or despin can be expressed as

tr
WSU=_;_.f Mz \at
Isp Yo iy

-1 Tp18,4 + k/‘te (izﬂz + Izﬂz)dt + Ioe(Qpr = Qge)
Isp| lz1 t5 lz Lot
L
N B bz k/”lzf I9 & (298)
- Z
Isp| lzr lzi \12,°

where the subscript 1 denotes conditions after the initial spinup to
Q1,55 the subscript e denotes conditions after the extension; and the
subseript f again denotes final conditions.

Three characteristic spinup techniques will be considered here.
These Involve extension with constant momentum I,;9,5, constant spin

rate 54, and continuous thrust.
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a. Constant—MomentumYExtension

Perhaps the simplest spinup technique is one where no spinup
thrust is applied during the extension. The modules are allowed to
separate as desired while the spin speed automatically decreases to
maintain the angular momentum constant. After achievement of the
desired extension the spinup jets are again actuated.

The fuel consumption now becomes

I T.:0:\/1
Worr = _zigzt 1 + _zl_z;>(;§§.. ) P
SU = 1, ¢Tgp <sz9zf lpi (299)

from (298). The rate of cable (or strut) extension does not effect this
fuel consumption and may be varied arbitrarily to maintain the cables

in tension during the extension. The fuel consumption is minimized by
selecting the smallest value of {y4 which will yield sufficient cable
tension at the completion of the extension.

b. Constant-Rate Extension

For this spinup technique, the spacecraft spin speed is maintained
at its initial value Q,; throughout the extension. The modules are
again allowed to separate until the final extension is reached, and the

spacecraft is then brought to its final spin speed sz.

The fuel consumptions relation (298) reduces to

WSU = IZfQZf 1 +<7‘Zf) ‘QZi IO(lZf- ZZi) "D)+ ln("lzi)"'nj(zzf- Zzi)
larlgp Ipr/\Spr lyilys lyi

(300)
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for this case. Fuel consumption now is minimized by selecting the
smallest value of ;4 which will yleld sufficient cable tension at
the beginning of the extension.

The spinup thrust for the constant-rate extension is established
by the requirement that the rate of change of angular velocity due to
operation of the thruster must be greater than that due to the rate of
extension or retraction. When the extension rate is maintained at a

constant value 1,, this condition can be expressed as

D3 > iniz[:ebj - ];i] (301)
zi

The minimum thrust is thus directly dependent on the product of the
extension rate and the initiasl spin rate. Corresponding conditions for
variable extension rates may be developed from (290), if the time varia-

tion of 1z is known.

¢c. Continuous-Thrust Extension

Another possible spinup technique would involve continuous
thrusting during the spinup. This brute-force technique will require
rapid extension of the oable modules to be efficient, buf will be simpler
to implement than the constant-rate extension.

The associated fuel consumption is given by
t I8 9} I,5\/1 Q4
Way = Dztr - zizf /4 . ( ze) + ( 21)< zf)( 21>
Isp  larIgp Qg8 Lz /\lzi/\%zf

1,¢D5 '
+ | 222 )(te - ty) (302)
(sznzf) ©
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To evaluate (302), a time history for either @, or 1, during the
extension must be selected. Values of &,, and te can then be
developed from this time history and (290), if one recalls that

ly = lzp and §y = Qye when t = tg.

If the extension rate iz is constant, then

\

1 2 2

Qge = T Izi0z1 + D3lzi(te - ti) + D322 (te - ti)]
zf

and | > (303)

lagf = lzi

te = t1 =
e i i

Substitution of (303) into (302) now yields

L% 14 (lzf - Zzi) T21%%3 N D3(1zr - 131) (504)

Ysu = 3 Q ) o1
zfisp Ippllyp zi z

and fuel consumption is optimized by selecting the smallest value of
$i,5 and the largest value of iz which will avoid cable slacking
during the extension.

d. Comparison of Extension Techniques

To compare the different extension techniques, note that the fuel
consumption for each technique is expressed as the ideal fuel consumption
at full extension plus an incremental fuel consumption for the extension
process. From the ratio of these incremental fuel consumptions for (299)

and (300), it follows that
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(924) oy o < Lz1 > - (lzf - 1) + 2(E§_> 1+ ___;Egi}_ (305)

2
(QZi)CR,CT 1:*517,:1. lz1 lyi

is the condition corresponding to equality of the constant-rate and
constant-momentum fuel consumption. Similarly the relation

(sz_)CM o ( Iz4 ) _1 Dy <sz _ ) (306)

(921) g, cr D51,5°) 2| B5ia(Rs)eg op[\lad

must hold for equality of the constant-rate and constant-momentum fuel
consumption.

The initial spin rates (QZi)CT and (QZi)CR for the constant-
thrust and constant-rate extensions should produce equal centrifugal
forces to start the extension and are both assumed to be equal to the

Qs . i Q4 : -
value ( Zl)CR,CT The spin rate (Q,i)qy for the constant-momentum
extension is greater than or equal to (QZi)CR,CT‘

The equations (305) and (306) are represented graphically in

figure 44. This figure allows the direct selection of the most economical

spinup technique for a particular spacecraft as a function of an extension

1y D
length ratio 121’ a moment arm ratio 727, a thrust ratio

zf zi
Q1) I,
- D3 , and a momentum ratio —(E—CM— -1 (——%) To
DBZZ(in)CR,CT (QZi)CR,CT D5zzi

make use of the figure, one first selects the extension parameters
Doy, D3, 1y, (QZi)CR,CT’ and (in)CM. The selected parameters and
the initial spacecraft characteristics determine values for the moment

arm ratio, the thrust ratio, and the momentum ratio.
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Figure Ll4.- Puel criteria for extension technique selection.

For a particular value of the extension length ratio, the moment
arim ratio locates a fuel criteria point corresponding to the constant-
rate cxtension and the thrust ratio locates a fuel criteria point cor-
secponding to the continuous-thrust extension. The momentum ratio gives

& third fuel criteria point for the constant-momentum extension on the

+

ordinate. The lowest of the three fuel criteria values indicates the

) technique which will yield the lowest fuel consumption.
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The special case, where the minimum centrifugal force for all
three techniques is equal, is of interest since the minimum cable tension

will usually determine the extension parameters. For this case, one has

(in)CM L
= (307)
('QZi)CR,CT Iz1
for the constant-momentum extension and
215(01)
| Dy > —— gl (308)
- 2 2
: lgf = lzi
-
re for the continuous-thrust extension.
From (307) and (308), one may write
Constant-momentum fuel criteria 2
=1+ 2L (309)
Continuocus~-thrust fuel criteria lyg

and the continuous~thrust extension is now always more economical than
the constant-momentum extension. Only the constant-rate extension and
the continuous-thrust extension need to be compared for this case.

| As an example, consider the Manned Orbital Research Laboratory
described in table 6. The assumed extension parameters for this

spacecraft are
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i

1y = 37.5 ft

137.5 ft

tl

lr
(QZi)CR,CT = 0.1 rad/sec

Qe = 0.4 rad/sec

D3 = P

Dy = 1y

100 1b

It

Lof

il

and a spinup technique which will yield the lowest fuel consumption is
desired. The cable tension must be greater than or equal to its initial
value during the extension and the spinup time is immaterial.

Since the minimum centrifugal force must be equal for all three
techniques, the constant-momentum extension may be disregarded. From

the given extension parameters and (301) and (308), one has

0.252 ft/sec

(1) ep

and

(iz)eg = 0.172 ft/sec

as the respective maximum extension rates for the continuous-thrust and
constant-rate spinups.

The extension ratios now are

1
23 _ o.33)
Lor
Do 0.5
Iz
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and

D3

= 1.02
D5 (22)on( %) g, o
By referring to figure 44, one notes that
(Fuel criteria)CT = 1.0
(Fuel criteria)CR = 1.6

Since the fuel criterion for the continuous-thrust extension is con-
siderably lower than that for the constant-rate extension, it follows
that the continuous~thrust spinup technique will require the least
spinup fuel for this example.

The actual fuel consumption values for the example, as computed

from (299), (300), and (304) for a specific impulse of 290 1bf sec/lbm,

are

WeR = 26 1b
Wey = 276 1b

The continuous-thrust spinup requires approximately 12 percent more fuel
than the ideal spinup at full extension and the constant-momentum and
constant-rate spinups require approximately 26 percent and 17 percent

more fuel than the ideal value of 219 pounds. A saving of about 22 pounds
of fuel can thus be realized for each spinup and despin cycle by selection

of an optimum spinup technique for this example.
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If desired, the response of the spacecraft to internal mass
movements and external disturbance torques may be included in the
analysis of the spinup and despin mode by using (8) and (12) as the
governing equations of motion. Supplementary linearized equations of

motions for the relative module oscillations can be incorporated in such

an analysis.



X. CONCLUSIONS

An approximate solution of the equations of motion of arbitrary
rotating spacecraft with variable disturbance functions has been developed
on the basis of small changes in the spacecraft body rates, Euler angles,
and inertia terms. Complex representations have been used to define
spacecraft and rate errors induced by the disturbance functions, and the
solutions for the time history components and total error vectors have
been examined for both uncontrolled and controlled spacecraft.

The results of this analysis have led to the following conclusions:

A. A comparison of the present analytical solution and solutions
obtained by numerical integration of the exact equations of motion for
two typical manned spacecraft has shown that the analytical solution is
in excellent agreement with the exact solution for the small angle and
rate regime. The analytical solution provides a simpler, more economical,
and more direct method of assessing the effects of various disturbances
and spacecraft characteristics on the spacecraft motion and allows an
insight into the mechanics of motion which cannot be derived from the
numerical solution.

B. Analytical upper limits of the rate and attitude errors induced
by various disturbances are in reasonable agreement with the maximum
errors found by interpolation of the numerical data. These upper limits
should suffice for first estimates of the effect of the disturbances
on the spacecraft motion.

C. The spacecraft inertia distribution was found to have a

significant effect on the spacecraft motion for egual disturbance
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characteristics. Spacecraft, whose inertia distribution approached that
of a flat disk, exhibit considerably more inherent stability than slender,
near-cylindrical spacecraft spinning about a maximum or minimum axis of
inertia. However, for most practical cases the disturbance characteristics
are directly related to the inertia distribution, so that the error bounds
for spacecraft with different inertia distributions will tend to be
similar.

D. Periodic mass motions within the spacecraft may result in rate
and attitude errors, which are several times greater than those predicted
for worst-case step products of inertia. For equal disturbance charace-
teristics, the largest errors resulted from circumferential mass motion
in the direction of spin. Respectively, smaller errors were produced
by radial mass oscillations in an offset spin plane and vertical mass
oscillations parallel to the spin axis. Motions of the crew such as
trampoline exercise, ladder climbing, or periodic translations along
the spacecraft floor.should be carefully examined to determine their
impact on the spacecraft motion.

E. The spacecraft errors indicated instability trends, when the
spin axis became an intermediate axis of inertia during a mass motion
and when the periodic motions took place with the precession frequency A.
Mass motions falling in these two categories should be avoided.

F. An investigation of possible control techniques revealed that
pure rate control and rate plus rate integral control would provide
adequate damping of the spacecraft errors induced by internal disturb-

ances. Initial attitude errors and attitude errors induced by external
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disturbances cannot be eliminated by these control techniques and will
require rate plus attitude control.

G. ©Single-axis control was found to be acceptable for all control
techniques and allows major reductions in the control gains and control
system weight for near-cylindrical configurations spinning about a
maximum axis of inertia.

H. Optimization of the spinup and extension technique for cable-
or strut-connected spacecraft modules can lead to appreciable fuel
savings for the extension and retraction process. Comparison of con-
tinuous thrust, constant rate, and constant-momentum extensions for an
example spacecraft indicated that 22 1bs or 5 percent of the ideal spinup
and despin fuel could be saved by use of a continuous-thrust extension

technique.
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XIV. APPENDIX A
DEVELOPMENT OF THE LINEARIZED EQUATIONS OF MOTION

The rotating spacecraft will be considered as the system of parti-
cles shown in figure 1. A set of X Y Z axes fixed to the spacecraft is
used to describe the rotational motion of the spacecraft with respect
to a set of Xy Y1 Z7 axes which translate without rotation in inertial
space and which remain parallel to a set of Xp Yp Zp axes fixed in
inertial space. The general moment equation (ref. 6) about the origin

of the X Y Z coordinate system is then
- - d I
=) B x & (giy) (a-1)

It will be assumed that the system mass does not change during the time

periods of interest so that

N ;7 z g' (a-2)
= rs X m:R- -

2
The absolute vector acceleration Rj is given by

- - - -5 - - - - -

.__)
Rj=Ro+rj+Q><rj+29><rj+9,><(ﬂ)<rj) (A-3)

and substitution of (A-3) in (A-2) yields

Hey

= / s . o . . + Y . Q .
M /. T3 X mJRO + /. Ty X mJ(Q X rJ) /. %3 X mJ( X J)

N - - o - - 7 :’ - -
r; ij[:ax (erjﬂ + Z ry ij(Qer) + ) Ty Xmyry

(A=)

[~
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or

- — -

- - 4 }"j‘) - Y' . -
M = mgrg X Ry + ). T3 ij(Oer)+ /. rJij(Qer)

N\ 2 (Bxi)+ ) ox|z (o ”ﬂ
+ r: X ms X rs) + Xirs X ms X rs
/ J J J jl J J

d

+ N o (.9 X + y Iy Ef (a-5)
/_‘ ij r.j r'j /, r.j mjrj -5

2
The acceleration of the origin Rgp is found from the general force

(ref. 6) equation
T4 2 D - -
-P—)':ms[Ro"'i'S'*"erS"'eQXI‘S"'aX(ﬁ)X?Sﬂ (a-6)

. and the first term of (A-5) may now be written as

- 2 - - - 2 5 - > =
mgTg X Ry = g X P = rg X mg(Q X rg) - rg X mg(8 X 15)

-

- 1= = = - - i - v
- rg X ms[ﬂ x (9 x rs)j] - rg X ms(Qs X rs) - rg X mgrg

= — - - PR
=T, XP - r )

—) -
XmS(QX S)—rSXmS(QXrS

CDH .J'

—
- T xmy (8 x F) - @ x E’-’S Xms(ﬁx?sﬂ - 0 xmg(Ts X g)

—
- Ty X mgTg (a-7)
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The equation of motion becames

- - - s - - 2 - -
M=rs XP+ ry X m3(Q x ry) - rg X mg(R x rg)
>_’—-) D e o 2 o S - - 7
+ /. ry X mj(Q X rj) - rg X ms(Q X rs) + ZJ ry X mj(Q X rj)

N - 21 - - e > -
- rg Xxmg(Q Xrg)| + QX% /. T3 X mj(Q X rj) - rg Xxmg(Q X rg)

A\ - - - 2 - 2 - I
+ 2 X LJ erJ X rJ - mgrg X rg| t /. rJ X erJ - Tg X meTre
(a-8)

where the vector from the center of mass to the origin is
- mny
s ) w7 (8-9)

To reduce (A-8) to a more useful form, the particle system will be
represented as a large mass associated with the spacecraft and fixed
with respect to the X Y Z axes and n smaller masses which move rela-
tive to the X Y Z axes. The rigid-body angular momentum vectors of the
spacecraft, the n moving masses, and the spacecraft mass center will
be designated as ﬁ%, ﬁ;, and ﬁ;, respectively. The rigid-~body angular

-
momentun of the system H referred to the system center of mass is then

- = - -
H=Hy+H ~-H (A-10)
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where

o]
[

- -
g = Trg X ms(Qs X rg)

o
=
|

- ? - -
HO_,_, rijj(QjX

and (A-8) can be rewritten as

n

- -
r

- - - 5
M=SXP+dt+ Q x /_‘mjrjer—ersX'rs

J=1

with

In component form, one obtains

n
Hy = Z ?J ij(a’) X?J)

-
3)

~

)

-

(A-11)

(a-12)

(a-13)

Mg = Yoy - 26Py + e - Taylly = Ty + Ty - Tty - Tyay

- G(Iy0y = TypQy = Tyxly) + Q(I0 - Ipxl% - Izyfy)

n

+

[J=1

p—

p—

J=1

J

L e

Z mJ(xJ&J - yjij) - ms(xs:;’s - yS}.(S) Qy
N
¥ Z mj(xy2y - 25%5)| = Lms(xsés - zgks)

I
+ ZE; my(y;2;-2593) - |ms(veZs = 2g¥s)

(A-1Lk)




and

My

o+

XPy = VePx + IpShy = Ipplly = Ippfly +

* q

"4

+
s

]
=

n
+ | ) mylesiy - xiy)
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—

n

ms y.. 2 e ..
Z 3(vsxy - x5y3)
J=1 -

my(ys2; = 2595)
- -
-

—

j:'l -

.

.

-

—

—

=
> m(zx -szJ)

\_J 1 _
Z ny(z5yy - v52;)

__«.j:l -

\.

rr‘ n 7

+ Ax.V. = v.X.
1 Z my(x5¥5 = ¥5%;)

j=1 .

= 2Py = XgPy + Iyfy = Ippf, - Iody +

U (I,0, = Iy - IoyQy) + Qp(Ix0y

e

ms(ys"‘s

L

r~—

ms(ysés

g

mg(zgXg

9'y(IxQx - Iyy - Ixzfz) + Q(Ty0y

(a-15)

(A-16)
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where

-~ n T ‘\
2 2 2 2
=T * Z mj(yj *2g ) = mg(ys™ + 25%)
=1 |
- 7
2 2 2 2
Iy = Iyo + z mj(xj + Zj ) - ms(xs + ZS )
LJ=1 i
-
~n
Iz = IzO + Z MJ(XJ + yj ) - mS(xs + ¥ )
[ J=1 »
e B >(A-m
Tz = Z my(xs25) - melxgzg)
| J=1 A
- n -
Tyz = Z my(y525) - mg(yszg)
=1 _
- n -
Iy = Z mj(xjyj) - mg(xgyg)
=1 | )
and
~n _ \\
J=1 |
F‘n —
Iy = 2 /. mj(xJ}'(j + Zjéj) - ms(xsis + ZSéS)
J= | 3
. -§~ 7
T =2 - mj(xjxj * yjyj) - mg(xgxg + ¥g¥g) (4-18)
J=1 ]
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1

=

s
o

LI PO T
(i

g B

)

le.
il

the jth moving mass are Xj,

mass center are

Xs=

Ys =

Rl 2

c
il
[t}

~71s

()
o
a3

s

L
il
[

g

o k2

mj(yjéj + Zj&j) - ms(ys

23

mj(xjij + zjij) - mg(xgzg + 2gkg)

ZS+Z

mj(xjirj + yj].(j) - ms(xsirs + ys}.(s)

AAE)

5

y

s7s)

-

.

e

—

—

((A-18)

J

, and the

(a-19)

For the special case when only one mass m with coordinates X,

Y, 2

yield

M
s

- 0, (140, - Tyzly - Tyxx) + (I - Ix0 - Tzyfly)

+ Q[(xg, - y;‘c)ﬂy + (x2 - zx)Qy + (y% - 25;’)]

is moving with respect to the spacecraft, the equations of motion

m . . - - L .
x = — (yP, - zPy) Ly - Iy - I 0 + LA - % = Ixn

(A-20)
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My = “—IlnsT (zPx - xP;) + Iy'hy - Iyzhz - Iyxbx + Iyﬂy - iyzﬂz - Iyxﬂx
- (10, - Ipxfy - IoyQy) + Op(Ix0y - Ixyfly = IxzQz)

+Q@inw+Qbmﬂ%+whx% (a-21)

and
m . L] - L] - .
M, = e (xPy - ¥Py) + 1,9, - Toxfx = Ipyly + 1,0, - I,,0, - oy

- (I - LyQy = Ixz0p) + e (Iy0y - Tyzf% = Tyxly)

+ Q[(zi - x2)0y + (zy - y2)y + (xy - yx)] (A-22)
with
I = Lo+ Q32+ ) )
Iy = Lo + Q(x% + 29)
I, = Ipo + Q(x° + ¥9)
) (a-23)
Ixy = Q(xz)
Iyz = Q(YZ)
Iy = Qxy) J
and
Iy = 2Q(y¥ + z2)
iy = 2Q(xx + zz)
I, = 20(xx + y3) (A-2k)
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Iz = Qxz + zx) (A-24)
I, = alyz + zy)

I

it

xy = Qxy + yx)
vhere @ 1is given by

Q= m—(mf;n;—m (a-25)
The spacecraft equations of motion (A-lh) to (A-l6) can be solved
for the body rates {4, {y, and {y. The motion of the rotating space-
craft is then defined in terms of the modified Euler angles v, 8,
and 9. These angles, as shown in figure 2, relate the moving body
axes X ¥ Z to the intermediate reference axes Xy Y7 Zy. From the figure

one notes that the time derivatives of the Euler angles are

$ = & + )y tan 6 sin @ + Q, tan 6 cos @ A
6 = Qy cos 9 - Oz sin @ ? (A-26)
& = {l; cos @ sec 6 + Qy sin P sec © J

The Fuler angles found from (A-26) and the body rates found from (A-1k)
to (A-16) completely define the rotational motion of the spinning
spacecraft.

For a large number of practical applications, one is concerned with
motions involving small oscillations of the spacecraft spin axis from an

equilibrium reference position. If it is assumed that the spacecraft
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spins about its Z axis, that the Z axis is initially an axis of maximum
or minimum inertia, and that the Zy axis is selected as the inertial

reference, then

1
[

tan ¢ = cos @ =

e

sin ¢

1]
RS

(a-27)

ne
@

tan 6 cos 8 = 1

ne

sin ©

and

Qy << Oy
(a-28)
Qy <<

for the small oscillation regime. Consistent with these assumptions,
one can consider the variable inertia terms to be sufficiently small in
comparison with the spacecraft moments of inertia so that they may be
neglected when multiplied by the oscillatory body rates or any angular
accelerations.

The reduction of the nonlinear governing equations to linear approxi=-
mations can best be accomplished by first converting (A-1k) through (A-16)
to nondimensional form. As was done in reference 4, one may introduce a
nondimensional time T, an inertia term €pq> and a nondimensional
mass Wi by

I

- - M -3 -
T = Ot €pq = T By = o (2-29)

where p and q range over X, ¥y, and 2z. The remaining nondimensional

terms are then




V3

2
I20%0
Mg
xj IzO
L Iz0

dp = 2
QZO
P

o = tp_

P Q 2
Z0

. }.{'

uy = sl
QZO

vy = zs e
J J Iz0 J

205 -

. N
P -
Pa I
ZO'QZO
1
I,oms
? (4-30)
Is_ o= 29 [Bs
IZO J 9202 IzO

and the nondimensional equations of motion become

sz

VgPy = WgPy T €y = Exyly = Exz07 = €xBx = Exyly = Exz0y

- wy(eymy = eymy = eyywy) + wyleg, = epyy - egywy)

—

Cde

s

e

e

[~71s

 n
ar

i
=

=1

[ n

(VW = WiV
;Z J( Jd d J j)
J=1

-
nylugvy - vyus)

-
wyluging = vyay)

-

o

- (ugVg = vgig) Ly

- (usﬁs = Wsﬁs) Wy,

(A-31)

- (Vsﬁs - svs)
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WgPx = UgPy + eydby = Eyz‘z’z. - eyxox + éy“):y - Eyzwy - Eyxx

- wx(egwy = egywy = ezyly) + wz(exx = exyy ~ exy)

n ——
+ y uj(vJuj - quJ) - (vglg = ugvy)) ay
J= -
+ y ky(vywy = wy¥y)l - (vgig = wg¥g)) wy
j=1 _
T n B
+ / }J.J(WJUJ - uJ\ij) - (Wsﬁs - usﬁs) (A-52)
J=1 -

UgPy = VgPx + €z = €530y = €3yly *+ €30z = €y = €zydy

- ay(eyy = exyy - exwp) + agleyny - ey, = epoy)

-
[ n

¥ Z nylugiy - ugug)) - (vgls - ugh) ) o

J

-

(=]

—

-

—

=]

MJ(WJ{IJ - VJV.IJ) - (Ws\.fs - VSV.JS) u)y

T~

)

=1

—

Y

~ B

+
s

[Ll
i)
[t

ny(u¥y - vyig)] = (ugVg - vgiig) (A-33)

—t
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where
-1 - w
2 2 2 2
€x = €&xo * ;ﬂ wy(vy© + wiT) = (vg® + ")
[J=1 .
r{g ]
~ 2 2 2 2
&y = &o*t |, biluy™ + wy%) - (ug® + wg%)
[ J=1 .
n '
2 2 2 2
€y = €50 + ;ﬂ pj(uj + V3 ) - (ug® + vg9)
J=1
sy (a-34)
-0 -
€xg = y uj(ujwj) - (usws)
yA—
[J=1 .
- n -
€yg = Ej uj(Vjo) - (vgwg)
L..=l J
[~ n )
oy = | ) Bslugvs) - (ugws)
(J=1 i /

In accordance with the small oscillation assumptions, take wye, 69,

&p, 6<, @2, Lps Pp, and the variable inertia terms
Il n %’ n ‘Il‘ %
2 y 2 2
E 2 R BN A HE B b B Z b L6 A 5 L PR A LAY
J=1 J=1 Jj=1 J=1 j=1 j=1
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and their derivatives to be of order A. Here A is restricted to be
sufficiently small so that terms of higher order than A may be
neglected in the governing equations.

Thus, 1t follows that

R/-J
of4) of2?) o[4) 0[/.\2] o[AQj] O[A2] OLA2] o(2)

- mz(eywy - &y - eyxwx) + ayle,w, - ffff%S - ezywy)

ofa] OCA] @ o o) o)

n
+ E: uj(uj%j - vjﬁj) - (ugvg - vglig) wy
J=1
N /
o[2?]
n
* Ej ugwy = wiug)| - (ugis = wgig) ) wy
9
Y culi
of2]
{i.
+ ) uj(VJWj - vaJ) - (vgig = wgVg) (A-35)
J=1
- _J

of4]
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I_py = WgPyx = UgPg + Eyd)y - €yzd)z - €y'x_d)_x'- éy(.l)y A éyzﬂ)z - éy}él.‘lx

OE/_\i o[a7] ofa) of2%] of22) ofa?] o[&) ofa?)

- oxlegwy = exxp = eqywy) + wa(exwy - exywy - €xz0z)

ofa] ofa%] ofa7] o[a) of2F] of2)
+ l:; uj(vjﬁj - uj\'fjﬂ - (vglg = ugVg) ) wy
5=l y
rE

N
+ I[? “j(vjwj - wjvjﬂ - (vgwg = wgVg)) wy

]\4

Jé y
o)
,( .
+ I['__u uJ(wJuJ - uJWj;J - (Ws{is - usﬁs) (a-36)
J=1
N~ J
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and

Y S W W o -
\I‘Z/ UsPy sPx 7 €20z = €zxWx = Ezyly T €zly = Ezxlx = €zyWy

ofa)  o[27] ofd) ofe?] of2Z) ofa) ofa7) o[a?)

- ‘”y( €%, " Exyy, T €xz‘°z,) + a( Eyly = EyzPg = ,eyx‘“x,)

of2?) of[¥] ofpF] of2?] of2?] of2]

+ {[Z 43057 - "J""J):l - (iste = ve¥s) oy
=1

A\ J
~
o[a?]
n
. [E ws(ugiy = ugig)| - (vghs = ugig) ) o
J:l - ~" o
o[a?]
n
v i il - s - i) ]
+ ) “j(ujvj vy u Vg = vgu (A-37)
J=1 »
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or neglecting terms of higher order

Ly = exiox + (ez - eydoywy = wy(exs - €y2007)

~—

 n
+ y “j(u.j‘}j = wjﬁj) - (ugwg - wglg) Wy,
L J=1 -
_— -
+ T Hi(vywy - wsvi)| - (vgig = wgVg) (A-38)
j= B

Ly = €y<1>y - (€z - EX)CDx(Dz - wz(éyz + €xz‘Dz)

r

n =
e ) ulvgiy - wgin)| - (veie - wave) ) o
/

o

— =

+</>

< -

“j(wjﬁj - U.J'.V;j | - (wsﬁs - usﬁs (A-59)

n
L, = egb, + &0, + Z wi(ugiy - viig)| - (ugis - vaiig)) (A=bo)
3=
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For the same range of disturbances, the Euler angles are given by

dp
aT

a0

dr

ay
aTr

= wy + u_;yecp + wze W
ofa) ofa?) oat/?)

= @y - 0,0
ofa) ofat/?]

= w, + 0P

0[:_1] 0 A5/2:] J

and again neglecting terms of order higher than A

W

do
ar

Wy + w0

9 _ s
ar Y z

ay

— = ()

g (A-b1)

> (a-k42)

ar z

If the spacecraft dynamics are well conditioned, the above equations

should give

which

or

1
G
o
In
S
A

<15°

1
5
o]
IA
D
IA

15°

-0.0685 < A < 0.0685

reasonable results in the small angle and rate regime, for
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Solutions for higher values of A will lead to correspondingly less
accurate solutions.

Since the form of the physical and nondimensional differential
equations is identical, only the more convenient physical equations of

motion will be used. These equations can then be written as

n
: I, - 1 1 : . :
J=1
n
- mg(zgXg - Xg2g) |0y + /. mj(zjs;j - ¥323)
J=1
- mg(zg¥s - ¥sZs) (a-43)

n

. IZ - Ix l . . .

Oy - <_Iy——)QZ Q =f§ My + Qz(Iyz + Ixzfz) + Z ni(z375 - v323)
J=1

n

- ms(zsﬁrs - ysis) QZ + /T‘ mj(xJZ.J - ZjiEJ)

J=1
- ng(xgZg = ZgXg) (A-Lk)
and
: 1,
g, + 2 q, = =(M, + ) my(ys¥y - x3575)| - mg(veXs - xc¥s)y (A-45)
I, I, j/:l




- 212 =

where the moments of inertia Iy and Iy, in general, may be approxi-

mated by their initial values in (A-~43) and (A-44), so that

[ n ) \

&:&w-imwyhaﬁ)-%%§+%ﬂ
J=1

-
2 2 2 2
Iy = Iyo + }j mj(xjo *+ 230 ) = mg(xg0" + 2g07) P (4-146)

I, =1Iz0+ }i nﬁ(xjg + YJ2) - ms(x52 + ysg)

J=1 J

since the retention of variable inertia coefficients does not appear to

add appreciably to the accuracy of the solutions. The other pertinent

|

inertia terms are

—n -
Iyy = Eﬁ mjy(x3z3)| - mg(xgzg)
5=1 ~ )
(A-47)
Iyg = /. mj(yjzj - mg(ygzg
J=1 . J

and the required time derivatives of the inertia terms become
v—‘ —
L] n \

—

[J=

=

-

ey

e
>
N
I

. i

s

mi(y5z5 + z3¥3) | - mg(ysZs + 2zg¥s) > (A-48)

_ﬂzl .
R
I, =2 mj(le'tj + Y,j}.’j) - mg(xgXg + Yg¥g)
fA—
=1 ’
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The Euler angle relations are given by

b~ 00 = Oy A
6 + 9,0 = o > (A-49)
V=0, )

If results should be required in nondimensional form, one need only

apply the transformations (A-29) and (A-30) to the solutions.
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XV. APPENDIX B

PARTICULAR SOIUTION FUNCTIONS FOR THE
UNCONTROLLED SPACECRAFT

The forcing function for the differential equation with the con-

stant moments of inertia approximation can be written as

£
F = Z Aij(t)
=

[

and thus the particular solutions are

£
F = }: Aji?'j(t)
j=1
T
F = Z AyF5(t)

=11l

where the functions fﬁ(t), §3(t), and §B(t) are given by the inverse

Laplace transforms

—_ ey Fj(s)

Fo(t) =1 {20
Jd s {52 + 7\2

J

(B-1)

~

(B-2)

J 02 - N2 2 + N2 g2 4 g2
Fj(s) ) st(s)
24+ A g2+ ¢g°

Fy(t) - <—02 :_L 7\2)[—1 {:

(B-3)
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A number of particular solution functions have been evaluated and are
presented in tables 1 - 3. Other functions may be determined from
(B=3) if needed.

The unit step function and the unit impulse function, that occur

in these tables, are defined as

CRR (i (5
and
0 for t #£0
5(t) = - (B-5)
h/:w 5(t) at =1

where t = 0 1is the initial time of application of the step or impulse

disturbance.
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TABLE 6.- ASSUMED CHARACTERISTICS FOR MANNED ORBITAL
RESEARCH LABORATORY
Module values
Parameter Total
Manned Counterweight values
Lo slug-ft° 103,000 30,000 133,000
To0 slug-Tt° 90,500 73,000 7,393,412
I,00 slug-ft° 173,000 73,000 7,475,912
mg, slugs 1,220 557 1,777
Q, slugs 36 _— 36
o, rad/sec 0.k
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TABIE 8.- ASSUMED CHARACTERISTICS FOR 150-FOOT SPACE STATION

Parameter

Total value

Iyp, slug-ft
¥y

Izp> slug-ft

mg, slugs

Q, slugs

o, rad/sec

2

I 0’ slug—ft2
2

10,500, 000
10,500,000
15,000,000
2,270

36

0.31k
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